Clean Energy Group Webinar

The Economics of Grid Defection

Hosted by

Todd Olinsky-Paul
Resilient Power Project Director

July 1, 2014
Housekeeping

All participants are in “Listen-Only” mode. Select “Use Mic & Speakers” to avoid toll charges and use your computer’s VOIP capabilities. Or select “Use Telephone” and enter your PIN onto your phone key pad.

Submit your questions at any time by typing in the Question Box and hitting Send.

This webinar is being recorded.

You will find a recording of this webinar, as well as previous Resilient Power Project webinars, online at:

vimeo.com/channels/resilientpower
About Clean Energy Group (CEG)

Clean Energy Group is a leading national, non-profit advocacy organization working in the US and internationally on innovative technology, finance and policy programs in the area of clean energy and climate change.
About the Resilient Power Project

CEG’s Resilient Power Project helps states and municipalities to implement clean resilient power solutions. Through the project, CEG helps states develop new partnerships, supports new public financing tools, connects public officials with private industry, engages federal resources, and works with state and local officials to support greater investment in resilient power deployment.

www.resilient-power.org
Today’s Guest Speakers

• **Bodhi Rader**, Electricity Associate, Rocky Mountain Institute

• **Leia Guccione**, Manager, Electricity and Industrial Practices, Rocky Mountain Institute

• **James Mandel**, Manager, Electricity and Industrial Practices, Rocky Mountain Institute
THE ECONOMICS OF GRID DEFLECTION
PRESENTATION WITH CEG
1 JULY 2014
INTRODUCTION TO RMI

WHAT WE DO
RMI advances market-based solutions that transform global energy use. We engage businesses, communities, and institutions to cost-effectively shift to efficiency and renewables, creating a clean, prosperous, and secure energy future.

WHAT DIFFERENTIATES US
- Our whole-systems expertise unlocks market-based solutions that can be replicated and implemented now.
- As an independent, non-partisan nonprofit, we convene and collaborate with diverse partners—business, government, academic, nonprofit, philanthropic, and military—to accelerate and scale solutions.
- We boldly tackle the toughest long-term problems—challenges often ignored by those held to short-term results.
- We’ve been a leader in energy efficiency and renewables for more than 30 years.
• Study Overview
• Highlight Results
• Analysis in Detail
• Ongoing Research
STUDY OVERVIEW

BACKGROUND AND MOTIVATION
SPIRALING EFFECTS THAT IMPERIL THE TRADITIONAL UTILITY BUSINESS MODEL

“…one can imagine a day when battery storage technology or micro turbines could allow customers to be electric grid independent.”

- Peter Kind, Disruptive Challenges report, 2013

Study Goal: Establish a fact-base for where and when solar plus battery storage hybrid power systems compete with traditional utility service
THESE FACTORS GIVE CUSTOMERS A NEW SPECTRUM OF CHOICE

Focus of our first report: “The Economics of Grid Defection”

- On-grid/Conventional Consumer
- Grid-tied/DG Consumer
- Grid-tied/DG + Storage Consumer
- Off-grid/DG + Storage Consumer

CONSUMER RELATIONSHIP WITH ELECTRIC SERVICE

TRADITIONAL DISRUPTIVE
WHERE WE LOOKED TO SEE IF IT COULD HAPPEN

<table>
<thead>
<tr>
<th>Location</th>
<th>Insolation (kWh/m²/day)</th>
<th>2012 Avg Retail Price ($/kWh)</th>
<th>Installed PV (MW)</th>
<th>Market Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>WESTCHESTER, NY</td>
<td>4.5 kWh</td>
<td>$0.15–$0.20</td>
<td>122.02 MW</td>
<td>Deregulated</td>
</tr>
<tr>
<td>LOUISVILLE, KY</td>
<td>4.5 kWh</td>
<td>$0.06–$0.08</td>
<td>2.92 MW</td>
<td>Regulated</td>
</tr>
<tr>
<td>SAN ANTONIO, TX</td>
<td>6 kWh</td>
<td>$0.05–$0.09</td>
<td>131.16 MW</td>
<td>Deregulated</td>
</tr>
<tr>
<td>LOS ANGELES, CA</td>
<td>6 kWh</td>
<td>$0.09–$0.17</td>
<td>2074.53 MW</td>
<td>Deregulated</td>
</tr>
<tr>
<td>HONOLULU, HI</td>
<td>5.5 kWh</td>
<td>$0.34–$0.41</td>
<td>27.33 MW</td>
<td>Regulated</td>
</tr>
</tbody>
</table>
WE TESTED THE DISRUPTION THROUGH A VARIETY OF SCENARIOS

- **Base Case** = Battery and Solar cost trends that are average of analyst estimates
- All scenarios assume 3% real rise in retail electricity rates

PV Sunshot
- Residential - $1.50/W
- Commercial - $1.25/W

DOE Battery Goal
- Both - $125/kWh

Accelerated Technology Improvement

Demand-Side Improvement
- **Efficiency Measures**
 - Residential – 30% Reduction
 - Commercial – 34% Reduction

- **Demand Management**
 - Residential – 2%
 - Commercial – None

Combined Improvement
HOW WE ARRIVED AT OUR RESULTS

Financial Assumptions
ITC Eligibility
MACRS

Financial Analysis Model
HOMER® software

Technical Specifications
Solar PV
Batteries
Inverter
Generator*

Cost Projections
Solar PV
Batteries
Inverter
Diesel Fuel*
(*Commercial Profiles Only)

2 Load Profiles
Residential
Commercial

Hybrid System Results
Levelized Cost of Energy kWh/yr
Net Present Cost
Replacement Costs ($/yr)
O&M ($/yr)
Emissions
HIGHLIGHT RESULTS

KEY ANALYTIC FINDINGS
By 2025 millions reach parity in our most conservative commercial scenario

- With projected declines in technology costs, parity arrives in all of our locations by 2050.

- Assuming aggressive price reductions (e.g., DOE Sunshot) or introducing demand management, these dates move forward by nearly a decade.
WITHIN A DECADE EVEN LARGE GROUPS OF RESIDENTIAL CUSTOMERS REACH PARITY

- Despite small systems, residential customers will see grid parity by 2050
- With aggressive technology price reductions or demand management, parity arrives over ten years earlier
THE COMMERCIAL PARITY TIMELINE

BC - Base Case
ATI - Accelerated Technology Improvement
DSI - Demand-Side Improvement
CI - Combined Improvement

Parity is here already or coming in the next decade

Over time parity reaches more customers

PRE-2014

2015 2020 2025 2030 2035 2040 2045 2050

Louisville, KY
Westchester, NY
Honolulu, HI
San Antonio, TX
Los Angeles, CA
THE RESIDENTIAL PARITY TIMELINE

Parity is here already or coming in the next decade

Over time parity reaches more customers

- **BC** - Base Case
- **ATI** - Accelerated Technology Improvement
- **DSI** - Demand-Side Improvement
- **CI** - Combined Improvement

- **Louisville, KY**
- **Westchester, NY**
- **Los Angeles, CA**
- **Honolulu, HI**
- **San Antonio, TX**

Timeline:
- 2015
- 2020
- 2025
- 2030
- 2035
- 2040
- 2045
- 2050

Legend:
- Green: Louisville, KY
- Pink: Los Angeles, CA
- Orange: Westchester, NY
- Blue: Honolulu, HI
- Purple: San Antonio, TX
EFFECTS ON CUSTOMERS AND REVENUE IN THE SOUTHWEST BY 2024 (COMMERCIAL)

- Base Case: $0.19
- Demand-side Improvement: $0.14
- Accelerated Technology Improvement: $0.12
- Combined Improvement: $0.09

States included in the Southwest region for this graph: AZ, CA, CO, NM, NV, UT
EFFECTS ON CUSTOMERS AND REVENUE IN THE SOUTHWEST BY 2024 (RESIDENTIAL)

Base Case: $0.46

Demand-side Improvement: $0.25

Accelerated Technology Improvement: $0.24

Combined Improvement: $0.14

States included in the Southwest region for this graph: AZ, CA, CO, NM, NV, UT
ANALYSIS IN DETAIL

SPECIFIC HIGHLIGHTS FROM OUR RESEARCH
Investing in energy efficiency and allowing for load shifting drastically reduces the necessary battery size, and subsequently total system cost.
• Holding cost of capital steady at 9.5% delays parity by 7 years
1. Near-term grid parity, and thus defection risk, exists for both commercial and residential customers; we are entering an era of greater customer empowerment.

2. Grid parity for the majority of US electricity customers arrives within the 30-year economic life of typical utility power assets.

3. Parity ≠ Defection.

4. Defection is sub-optimal and can lead to uneconomic and inequitable outcomes.

5. The speed of disruption in the electricity sector is outpacing regulatory and business model reform; we have <10 years to fix before problems compound significantly and need to make rapid progress.
ONGOING RESEARCH

PLANS FOR COMPANION REPORT
TRANSFORMING THE CURRENT RELATIONSHIP WITH ELECTRIC SERVICE

Focus of our forthcoming report

CONSUMER RELATIONSHIP WITH ELECTRIC SERVICE

TRADITIONAL

Is complete grid defection an optimal choice?

Grid-tied/ DG Consumer

What can utilities do in advance of these dates to stabilize their business model?

Off-grid/ DG + Storage Consumer

What new interactions and participants might we expect in a transactive grid?
Distributed resources and the grid can be complementary

GRID BENEFITS

- Reliability (stable voltage and frequency, redundancy)
- Virtual storage
- Start-up Power
- Access to upstream markets
- Risk reduction
- Diversification of supply and demand sources

DER BENEFITS

- Reduced capacity needs on the grid
- Contributions to ancillary services
- Transmission congestion relief
- Access to fast-ramping resources
- Peak shaving and demand response capability (upgrade deferral)
- Reduced environmental impact
- Improved resiliency
THE NEAR AND PRESENT VALUE OF SOLAR AND BATTERIES

ENERGY
• energy
• system losses

CAPACITY
• generation capacity
• transmission & distribution capacity
• DPV installed capacity

GRID SUPPORT SERVICES
• reactive supply & voltage control
• regulation & frequency response
• energy & generator imbalance
• synchronized & supplemental operating reserves
• scheduling, forecasting, and system control & dispatch

FINANCIAL RISK
• fuel price hedge
• market price response

SECURITY RISK
• reliability & resilience

ENVIRONMENTAL
• carbon emissions
• criteria air pollutants (SO\textsubscript{x}, NO\textsubscript{x}, PM\textsubscript{10})
• water
• land

SOCIAL
• Economic development (jobs and tax revenues)
SOME STABLE BUSINESS MODELS ARE EMERGING

In different parts of the U.S., utilities and service providers are already building or offering solar in combination with battery storage. As these projects are still relatively boutique, the landscape of business models is still poorly understood.

A few of the companies we are keeping an eye on for innovative business models

![Logos of various companies]
ALL BUSINESS MODELS DEPEND ON REDUCING COSTS (1/2)

BATTERY PRICE TEAM ANALYSIS PROJECTIONS
[DASHED LINES REPRESENT EXTRAPOLATIONS]
[Y-Axis $/kWh]
ALL BUSINESS MODELS DEPEND ON REDUCING COSTS (2/2)

The importance of Balance of Systems costs

Energy Storage System Cost Estimates

BCG = Boston Consulting Group BNEF = Bloomberg New Energy Finance
Creating a clean, prosperous, and secure energy future™

www.rmi.org
Thank you for attending our webinar

Todd Olinsky-Paul
Resilient Power Project Director

todd@cleanegroup.org

Find us online:

www.resilient-power.org
www.cleanegroup.org
facebook.com/clean.energy.group
@cleanenergygrp on Twitter