State-Federal RPS Collaborative

Clean Energy States Alliance

America’s Power Plan
Wholesale Market Design
and
Distributed Generation

Hosted by
Warren Leon, Director, CESA

October 2, 2013
Housekeeping

- All participants will be in listen-only mode throughout the broadcast.
- We suggest that you connect to the audio portion of the webinar using VOIP and your computer’s speakers or USB-type headset. You can also connect by telephone. If by phone, please expand the Audio section of the webinar console to select “Telephone” to see and enter the PIN number shown on there onto your telephone keypad.
- You can enter questions for today’s event by typing them into the “Question Box” on the webinar console. We will pose your questions, as time allows, following the presentation.
- This webinar is being recorded and will be made available after the event on the CESA website at

www.cleanenergystates.org/events/
About CESA

Clean Energy States Alliance (CESA) is a national nonprofit organization working to implement smart clean energy policies, programs, technology innovation, and financing tools, primarily at the state level. At our core is a national network of public agencies that are individually and collectively working to advance clean energy.
State-Federal RPS Collaborative

• With funding from the Energy Foundation and the US Department of Energy, CESA facilitates the Collaborative.

• Includes state RPS administrators, federal agency representatives, and other stakeholders.

• Advances dialogue and learning about RPS programs by examining the challenges and potential solutions for successful implementation of state RPS programs, including identification of best practices.

• To sign up for the Collaborative listserv to get the monthly newsletter and announcements of upcoming events, see: www.cleanenergystates.org/projects/state-federal-rps-collaborative
Today’s Webinar: America’s Power Plan

• A project to propose a path to overcoming regulatory, legal, and economic barriers to cleaner more-efficient energy
• 150 top energy experts participated
• The premise: “We are at a pivotal point in America’s energy history. Decisions and investments made in the next decade will shape the course of the power sector, the economy, national security and the climate for decades to come.”
• An overview paper and seven focused papers
• “Together, these papers provide a policy toolbox to guide decision makers on utility business models, finance, market design, transmission and distribution policies, distributed energy resource integration and siting.”
• Curated by the Energy Foundation in partnership with Energy Innovation, an energy and environmental policy firm
Two Webinars for CESA/RPS Collaborative

• Will cover four of the seven papers
 – September 30
 • Utility Business Models
 • Finance
 – Today
 • Wholesale Market Design
 • Distributed Generation

http://www.cleanenergystates.org/events/
http://americaspowerplan.com/
Today’s Guest Speakers

• Michael Hogan, Senior Advisor, Regulatory Assistance Project

“Aligning Power Markets to Deliver Value”

• Joseph Wiedman, Partner, Keyes Fox & Wiedman; Team Member, IREC

“Distributed Generation’s Role in Our Clean Energy Future”
Contact Info

Warren Leon
Clean Energy States Alliance
Wleon@cleanegroup.org
www.cleanenergystates.org

Michael Hogan, RAP
mhogan@raponline.org

Joe Wiedman, Keyes Fox & Wiedman
jwiedman@kfwlaw.com

www.americaspowerplan.com
America’s Power Plan:
Aligning Power Markets to Deliver Value

Matching the structure and operation of wholesale power markets to the needs of a modern power system

Michael Hogan
Senior Advisor

2 October 2013

The Regulatory Assistance Project
50 State Street, Suite 3
Montpelier, VT 05602
Phone: 802-223-8199
web: www.raponline.org
Success brings new risks, complexity

“System cost” of variable RES vs. average market price

Reaching “grid parity” will require more than just deployment
Challenges

Typical March Day – significant change starting in 2015

Potential Over-generation
Gross & net demand in UK_South in 2030…

Challenges
Challenges

Operating Profile of mid-merit CCGTs in 2030

Example of large CCGT fleet with “typical” average load factor (58%)*
RE Futures, Fig 2.7 (Vol. 1, pg 2-18): “…an increasing fraction of the existing conventional fossil fleet may evolve from an energy-providing role to a reserve-providing role as renewable energy supply increases, thereby reducing the need to install new generation capacity solely to meet operating reserve requirements.”
Markets that value whatever is needed

- Recognize the value of efficiency
- Update system operations to unlock flexibility in the short term
- Update investment incentives to drive cost-effective flexibility in the long term

...another resource for those not familiar with it:

“Meeting Renewable Energy Targets in the West at Least Cost: The integration challenge”

(Prepared in 2012 for Western Governors’ Association)
Markets that value whatever is needed

• Recognize the value of efficiency
 – Programs (rather than markets) will continue to be the primary vehicle for delivering cost-effective efficiency, but opportunities do exist
 – Allow energy efficiency to participate in capacity markets
 – Standardize M&V procedures and capacity values for a menu of common EE measures
 – Consider location-specific EE as a competitive alternative to transmission
Markets that value whatever is needed

• Update system operations to unlock flexibility in the short term
 – Upgrade scheduling, dispatch and weather forecasting processes
 – Consolidate/integrate balancing areas
 – Access dispatchability of renewable energy assets
 – Employ day-ahead markets for current ancillary services; qualify new services
 – Co-optimize energy and reserves
 – **Expand the roles of demand response**
Markets that value whatever is needed

• Update investment incentives to ensure flexibility in the long term
 – Develop tools to forecast net demand and forward value of critical capabilities
 – In regulated markets, survey embedded options; invest to increase asset capabilities
 – Adapt forward mechanisms to capture the value of critical operational capabilities
 – Adopt forward markets for critical services
 – Create forward market for temporal decoupling service
 – Encourage new entrants wherever possible consistent with overall market structure
Benefits of wide-area regional imbalance markets

Source: “Flexibility Reserve Reductions from an Energy Imbalance Market with High Levels of Wind Energy in the Western Interconnection” King, Kirby, Milligan and Beuning
The forward value of flexible resources

Number of hours with zero or negative prices

<table>
<thead>
<tr>
<th>High Generation Flexibility</th>
<th>Low Generation Flexibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>>1500</td>
</tr>
</tbody>
</table>

Percentage of wind shed

Wind penetration (GW)

leading to increased base-load & peak generation investment risks...
...while providing significant opportunities for demand response, storage, flexible generation,

Source: Energy Futures Laboratory, Imperial College London
Increased demand flexibility through ‘smart’ grid investments is a cost-effective alternative to curtailing low-carbon sources.

Marginal Value Of System Capacity = $70
Annual Resource Price Adder = $0
Extended Summer Price Adder = $0
Increased demand flexibility through ‘smart’ grid investments is a cost-effective alternative to curtailing low-carbon sources.
Increased demand flexibility through ‘smart’ grid investments is a cost-effective alternative to curtailing low-carbon sources.
Responsive demand – in both directions - is a cost-effective solution to both curtailment and excessive price volatility.

End-use energy storage is feasible, low-cost and widely available.
Cost per Unit of Performance for Various Energy Storage Options

- H.P. capacitors
- H.P. flywheels
- L.D. flywheels
- L.D. capacitors
- Distributed/demand-side
- Battery
- Grid-scale
- Flywheel/capacitor

Sources: Electricity Storage Association, EPRI, Sandia National Laboratories, Ecofys
About RAP

The Regulatory Assistance Project (RAP) is a global, non-profit team of experts that focuses on the long-term economic and environmental sustainability of the power and natural gas sectors. RAP has deep expertise in regulatory and market policies that:

- Promote economic efficiency
- Protect the environment
- Ensure system reliability
- Allocate system benefits fairly among all consumers

Learn more about RAP at www.raponline.org
Increased demand flexibility through ‘smart’ grid investments is a cost-effective alternative to curtailing low-carbon sources.

<table>
<thead>
<tr>
<th>Grid Scale Battery Technology</th>
<th>Demand Response Costs Compared to Various Grid Scale Battery Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DR Cost* ($/kW)</td>
</tr>
<tr>
<td>Lithium-ion - High Power</td>
<td>$230</td>
</tr>
<tr>
<td>Advanced Lead Acid</td>
<td>$230</td>
</tr>
<tr>
<td>Lithium Ion - High Energy</td>
<td>$230</td>
</tr>
<tr>
<td>Vanadium Redox Battery</td>
<td>$230</td>
</tr>
<tr>
<td>Zinc Bromine</td>
<td>$230</td>
</tr>
<tr>
<td>Sodium Sulfur (NaS)</td>
<td>$230</td>
</tr>
<tr>
<td>Zinc- Air Battery</td>
<td>$230</td>
</tr>
</tbody>
</table>

* DR Cost = Deployed cost, average. (Wikler et al. 2009)
** Battery Costs = Deployed cost, average. (Seto 2010)

Source: Lawrence Berkley National Laboratory, June 2012
Distributed Generation’s Role in Our Clean Energy Future

Joseph Wiedman
Interstate Renewable Energy Council
October 2, 2013
Mechanisms that Support Retail Solar

Shared Renewables
Multiple Customers, Multiple Meters, Multiple Locations
Wholesale Segment Growth

North American Share by Photovoltaic Market Segment

- Off grid
- Ground Mount
- BM Non-residential > 100 kW
- BM Non-residential ≤ 100 kW
- Residential

Source: NPD Solarbuzz

BM = Building Mounted

Curated by the Energy Foundation in partnership with Energy Innovation.
Bringing Down BOS costs – Permitting and Interconnection

Model Interconnection Procedures

Sharing Success
Emerging Approaches to Efficient Rooftop Solar Permitting
Integrated Distribution Planning

Five Steps of IDP

1. Build a reasonable forecast of anticipated DG growth.

2. Establish the hosting capacity of distribution infrastructure.

3. Estimate anticipated DG development compared to the hosting capacity.

4. Plan any upgrades necessary to accommodate anticipated development.

5. Communicate the resulting hosting capacity, penetration levels, and planned upgrades to the public.
Discussion

Have further questions?

jwiedman@kfwlaw.com
510-314-8202