PV Manufacturing Cost Analysis:
Future Cost Reduction Opportunities

CESA Member Webinar:
Solar PV Manufacturing Costs

Alan Goodrich,
Michael Woodhouse,
Ted James

June 22, 2012
DISCLAIMER AGREEMENT

These manufacturing cost model results (Data) are provided by the National Renewable Energy Laboratory (NREL), which is operated by the Alliance for Sustainable Energy LLC (Alliance) for the U.S. Department of Energy (DOE).

It is recognized that disclosure of these Data are provided under the following conditions and warnings: (1) these Data have been prepared for reference purposes only; (2) these Data consist of forecasts, estimates, or assumptions made on a best-efforts basis, based upon present expectations; and (3) these Data were prepared with existing information and are subject to change without notice.

The names DOE/NREL/ALLIANCE shall not be used in any representation, advertising, publicity, or other manner whatsoever to endorse or promote any entity that adopts or uses these Data. DOE/NREL/ALLIANCE shall not provide any support, consulting, training, or assistance of any kind with regard to the use of these Data or any updates, revisions, or new versions of these Data.

YOU AGREE TO INDEMNIFY DOE/NREL/ALLIANCE AND ITS AFFILIATES, OFFICERS, AGENTS, AND EMPLOYEES AGAINST ANY CLAIM OR DEMAND, INCLUDING REASONABLE ATTORNEYS' FEES, RELATED TO YOUR USE, RELIANCE, OR ADOPTION OF THESE DATA FOR ANY PURPOSE WHATSOEVER. THESE DATA ARE PROVIDED BY DOE/NREL/ALLIANCE "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY DISCLAIMED. IN NO EVENT SHALL DOE/NREL/ALLIANCE BE LIABLE FOR ANY SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE, OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THESE DATA.
Overview

- **Reported Prices: Market Distortions**
 - Historic-cost reduction factors
 - The rising importance of innovation
 - The role of supply-side subsidies

- **Cost Analysis in-Support of R&D**

- **Future Cost-Reduction Opportunities**
 - Wafer based c-Si modules
 - SJ polycrystalline CdTe modules

- **System-Price Trends**
Top-Down (Reported) Prices

Useful for long-term strategic decisions?
The Ups and Downs of the PV Market

- PV is a nascent industry...prices generally reflect temporary shifts in buyer- or supplier-power

Sources:
- Graph prepared by Douglas M. Powell, MIT using data from:
 - IHS, PV Demand and Installation Surge in Q4, (2011)
Market Distortions Throughout the Supply Chain

- Opportunity for low- to non-Si techs turned out to be limited
- Consider long-term competitive prices

Sources: Graph prepared by David Feldman, NREL using data from:
Graph prepared by David Feldman, NREL, using data from:
Historic Solar PV Module Prices – Top Down

• Historic factors: scale (43%), efficiency gains (30%)

Sources: Graph courtesy of David Feldman, NREL; data sources:
Recent, Dramatic Shift in the Origin of Production

U.S. and China & Taiwan Market Share of Global Shipments of PV Cells/Modules

Sources: Graph prepared by Ted James, NREL using data from:
The Impact of Supply-Side Subsidies

Sources: Alan Goodrich, Peter Hacke, Qi Wang, Bhushan Sopori, Robert Margolis, Ted James, David Hsu, and Michael Woodhouse (2012). “A Wafer-Based Monocrystalline Silicon Photovoltaics Road Map: Utilizing Known Technical Improvement Opportunities for Further Reductions in Manufacturing Costs.” NREL (in preparation)
Bottom-Up Cost Analysis

Long-term competitive pricing
Methodology Overview

Technical Cost Models (Busch 1987)

Relate technical details to costs (according to GAAP)

Direct Manufacturing Cost Summary: CIGS, Coevaporated on glass (Annual production volume: 600 MWp DC)

<table>
<thead>
<tr>
<th>VARIABLE COST ELEMENTS</th>
<th>$/Wp</th>
<th>$/module</th>
<th>$/year</th>
<th>percent</th>
<th>investment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material Cost</td>
<td>$0.61</td>
<td>$72.03</td>
<td>$363,572,081</td>
<td>56.0%</td>
<td></td>
</tr>
<tr>
<td>Direct Labor Cost</td>
<td>$0.09</td>
<td>$10.71</td>
<td>$54,059,605</td>
<td>8.3%</td>
<td></td>
</tr>
<tr>
<td>Utility Cost</td>
<td>$0.02</td>
<td>$1.95</td>
<td>$9,823,730</td>
<td>1.5%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FIXED COST ELEMENTS</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment Cost</td>
<td>$0.15</td>
<td>$17.58</td>
<td>$88,740,016</td>
<td>13.7%</td>
<td>$621,180,110</td>
</tr>
<tr>
<td>Tooling Cost</td>
<td>$0.00</td>
<td>$0.02</td>
<td>$9,739</td>
<td>0.0%</td>
<td>$2,733,073</td>
</tr>
<tr>
<td>Building Cost</td>
<td>$0.00</td>
<td>$0.02</td>
<td>$9,739</td>
<td>0.0%</td>
<td>$2,733,073</td>
</tr>
<tr>
<td>Maintenance Cost</td>
<td>$0.05</td>
<td>$5.90</td>
<td>$29,772,831</td>
<td>4.6%</td>
<td></td>
</tr>
<tr>
<td>Overhead Labor Cost</td>
<td>$0.00</td>
<td>$0.09</td>
<td>$467,282</td>
<td>0.1%</td>
<td></td>
</tr>
<tr>
<td>Cost of Capital</td>
<td>$0.17</td>
<td>$20.45</td>
<td>$103,221,567</td>
<td>15.9%</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL COSTS

| | $1.08 | $128.73 | $649,748,214 | 100.0% | $623,913,183 |

Not pictured:

Calculate minimum sustainable (long-term competitive) price

Pro forma income statement, discounted cash flow analysis

DCF Analysis: Minimum Sustainable Price

Greenfield analysis

- Construction, ramp-up periods
- Operating expenses: %-revenue method (industry comparables)
- Accelerated depreciation
- Internal hurdle rate = total cost of capital (including debt):
 exclude interest expense

Sales
Cogs
Contribution margin

SG&A
Overhead labor
R&D
Regulatory
Warranty
Working capital
Depreciation
EBIT

Taxes
Unlevered net income

Plus: depreciation
Less: capital expenditures
Less: NWC
Plus: after tax salvage value
Free cash flow

Price that satisfies NPV = 0, using the “Internal hurdle rate” as the discount rate = Minimum Sustainable Price
Technology Road Maps

The competitive price of alternative tech. pathways:

Wafer based c-Si

SJ poly CdTe
Poly Costs: Capital, Energy Intensive

Solar Grade Polysilicon: Direct Manufacturing Costs

Based on regional differences in plant-scale, technologies, corporate hurdle rates, OPEX, labor & utility rates
Source: NREL internal cost model

- Today’s competitive price ($27/kg) may approach $20/kg in the long-term

Sources: Alan Goodrich, Peter Hacke, Qi Wang, Bhushan Sopori, Robert Margolis, Ted James, David Hsu, and Michael Woodhouse (2012). “A Wafer-Based Monocrystalline Silicon Photovoltaics Road Map: Utilizing Known Technical Improvement Opportunities for Further Reductions in Manufacturing Costs.” NREL (in preparation)
The Value of Thin Wafers

- Potential cost disadvantages:
 - Mechanical yield losses, surface passivation requirements

Sources: Alan Goodrich, Peter Hacke, Qi Wang, Bhushan Sopori, Robert Margolis, Ted James, David Hsu, and Michael Woodhouse (2012). “A Wafer-Based Monocrystalline Silicon Photovoltaics Road Map: Utilizing Known Technical Improvement Opportunities for Further Reductions in Manufacturing Costs.” NREL (in preparation)
U.S. Bulk c-Si Wafers: Cost Road Map

Standard (B-Cz) c-Si Solar PV Wafer Manufacturing Costs:
Cost-Reduction Opportunities, 10 million wafers per month U.S. firm.

Sources: Alan Goodrich, Peter Hacke, Qi Wang, Bhushan Sopori, Robert Margolis, Ted James, David Hsu, and Michael Woodhouse (2012). “A Wafer-Based Monocrystalline Silicon Photovoltaics Road Map: Utilizing Known Technical Improvement Opportunities for Further Reductions in Manufacturing Costs.” NREL (in preparation)
Many known pathways to higher efficiencies

...but, at what cost?
Performance opportunities

- Front side shadowing
- Bulk recombination
- Surface recombination

However, cost trade-offs exist

- Trina: 17.2% cells, $1.16/W module costs\(^1\)
- Sunpower: 24% cells, $1.48/W module costs\(^2\)

\(^1\)Trina Q2 2011 Earnings Call. August 23, 2011.
Efficiency Adjusted Module Prices (rel. to SunShot)

To achieve SunShot, 15% module may not exceed $47/m² (cost)

- Based on ground mount system costs; efficiency penalty greater for rooftop systems
- 15% BoS penalty (rel. to 20% modules) = ~$40/m²

Sources: NREL internal cost models.
U.S. Wafer Based c-Si PV Road Map

Sources: Alan Goodrich, Peter Hacke, Qi Wang, Bhushan Sopori, Robert Margolis, Ted James, David Hsu, and Michael Woodhouse (2012). “A Wafer-Based Monocrystalline Silicon Photovoltaics Road Map: Utilizing Known Technical Improvement Opportunities for Further Reductions in Manufacturing Costs.” NREL (in preparation)
CdTe Technical Improvement Pathways

(Single-junction polycrystalline cells. 89% cell-to-module derate)

<table>
<thead>
<tr>
<th>Cell Performance Parameters</th>
<th>Baseline (2011)</th>
<th>Near term</th>
<th>Midterm</th>
<th>Full potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-Circuit Current Density: J_{sc} (mA/cm²)</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
</tr>
<tr>
<td>Open-Circuit Voltage: V_{oc} (V/cell)</td>
<td>0.80</td>
<td>0.90</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Fill Factor: FF (%)</td>
<td>70</td>
<td>75</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>AM 1.5 Power Conversion Efficiency (%)</td>
<td>13% Cells (11.7% modules)</td>
<td>16%</td>
<td>20%</td>
<td>21% cells (18% modules)</td>
</tr>
</tbody>
</table>

Malaysia CdTe (on-glass) Module Prices
(Single-junction polycrystalline cells. 89% cell-to-module derate)

System Price Trends

Market Distortions
Regional Variations
1H 2011 NREL-System Price Estimates

Status of the U.S. Solar Industry

Justin Baca
Senior Research Manager
Solar Energy Industries Association
About SEIA

• Founded in 1974
• U.S. National Trade Association for Solar Energy
 • 1,000+ member companies from around the world
 • Members from across 50 states
 • Largest companies in the world as well as small installers
• Our Mission: Build a strong solar industry to power America
• Our Goal: 10 gigawatts (GW) of annual installed solar capacity in the U.S. by 2015
Industry Overview

- The value of solar installations grew to $8.4 billion in 2011, up from $6 billion in 2010
- Solar employment more than doubled from 2009 to 2011, topping 100,000 American workers

Value of PV Installations

<table>
<thead>
<tr>
<th>Year</th>
<th>SEIA Estimate</th>
<th>SEIA/GTM Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>$1.0</td>
<td>$1.0</td>
</tr>
<tr>
<td>2007</td>
<td>$2.0</td>
<td>$2.0</td>
</tr>
<tr>
<td>2008</td>
<td>$3.0</td>
<td>$3.0</td>
</tr>
<tr>
<td>2009</td>
<td>$4.0</td>
<td>$4.0</td>
</tr>
<tr>
<td>2010</td>
<td>$5.0</td>
<td>$5.0</td>
</tr>
<tr>
<td>2011</td>
<td>$6.0</td>
<td>$8.0</td>
</tr>
</tbody>
</table>

U.S. Solar Workforce

<table>
<thead>
<tr>
<th>Year</th>
<th>SEIA Estimate</th>
<th>The Solar Foundation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>10,000</td>
<td>10,000</td>
</tr>
<tr>
<td>2007</td>
<td>20,000</td>
<td>20,000</td>
</tr>
<tr>
<td>2008</td>
<td>30,000</td>
<td>30,000</td>
</tr>
<tr>
<td>2009</td>
<td>40,000</td>
<td>40,000</td>
</tr>
<tr>
<td>2010</td>
<td>50,000</td>
<td>70,000</td>
</tr>
<tr>
<td>2011</td>
<td>60,000</td>
<td>90,000</td>
</tr>
</tbody>
</table>
U.S. Solar Business Locations

Source: SEIA National Solar Database

Manufacturer
Contractor/Installer
Other
230,000 PV Systems in the U.S.

- 18,000 installed in Q1 alone
- Average system sizes slowly growing
 - Residential: 5-6 kW
 - Commercial: ~80 kW
 - Utility: 5.7 MW
U.S. Solar Industry Continues Strong Growth

- PV demand grew 85% in Q1 2012 over Q1 2011
U.S. PV Demand Forecast to Grow 75% in 2012 to Nearly 3.3 GW
U.S. to Lead in CSP

- California, Arizona and Nevada are leading states for CSP
- The current CSP pipeline contains some 5,700 MW of projects with signed PPAs
- 1,300 MW under construction

CSP & CPV Forecast
Continued U.S. Market Diversity: Creating Opportunity
U.S. States With >10 MW of PV Installations, 2007

Source: SEIA/GTM Research: Solar Market Insight Q3 2011

Need more U.S. market data? Contact research@seia.org
Solar Continues To Become More Affordable and More Competitive

National Weighted Average System Costs, 2010 – Q1 2012

- Installed Price ($/Wdc)
- Residential
- Commercial
- Utility
- Blended

Q1 2010, Q2 2010, Q3 2010, Q4 2010, Q1 2011, Q2 2011, Q3 2011, Q4 2011, Q1 2012
More Markets Developing in Next 4 Years

Residential PV break-even installed price in **2008** assuming full retail net metering, state incentives and 30% ITC.

Residential PV break-even installed price in **2015** assuming full retail net metering and 30% ITC.

Source: Denholm, Margolis, Ong, Roberts “Break-Even Cost for Residential Photovoltaics in the United States: Key Drivers and Sensitivities” NREL 12/2009
Other Issues

• SolarWorld trade case against Chinese cell manufacturers
• Expiration of 1603 Treasury program at end of 2011 and tax equity supply
• Expiration of 30% Investment Tax Credit at the end of 2016
• Soft Costs
THANK YOU

Justin Baca
Senior Research Manager
jbaca@seia.org

More detailed data available in the quarterly U.S. Solar Market Insight reports. Discounts on research and trade shows for SEIA members.

Interested in joining SEIA?
membership@seia.org