Decarbonizing Electricity: The Critical Role of Firm Low-Carbon Resources

May 15, 2020
Housekeeping

Join audio:
- Choose Mic & Speakers to use VoIP
- Choose Telephone and dial using the information provided

Use the orange arrow to open and close your control panel

Submit questions and comments via the Questions panel

This webinar is being recorded. We will email you a webinar recording within 48 hours. This webinar will be posted on CESA’s website at www.cesa.org/webinars
Webinar Speakers

Jesse Jenkins
Assistant Professor,
Princeton University

Warren Leon
Executive Director,
Clean Energy States Alliance
(moderator)
Decarbonizing Electricity
The Critical Role of Firm Low-Carbon Resources

Jesse D. Jenkins, PhD
Assistant Professor | Princeton University
Dept. of Mechanical & Aerospace Engineering | Andlinger Center for Energy & Environment
Clean Energy States Alliance Webinar | May 15, 2020
Twin challenges: zero carbon, >double demand

(a) Total New Carbon-free Electricity Generation

(b) Annual Additions Rate (2020-2050)

Total 2020 U.S. electricity generation

Total 2020 zero-CO₂ generation

(b) Data source: U.S. EIA for renewables growth rate. MIT Future of Nuclear in a Carbon Constrained World study for historic nuclear growth rate (rescaled by population for comparison).

*Growth rate scaled by population for comparison purposes

Data: +35-37 average GW/year
Clean electricity growth without precedent

THE GOOD NEWS: WIND, SOLAR, BATTERY COSTS PLUMMET

A race to beat fossil fuels on cost...

“It can be more expensive to add cheap solar than to add expensive geothermal.”

-David Olsen, Member of CAISO Board of Governors, former President & CEO of Patagonia

An Illustrative Example

Peak demand: 34 GW
Capacity factors
Wind: 28%
Solar: 24% (ac)
No storage in this example

<table>
<thead>
<tr>
<th></th>
<th>Levelized cost of electricity (cents/kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas</td>
<td>5</td>
</tr>
<tr>
<td>Wind</td>
<td>4</td>
</tr>
<tr>
<td>Solar</td>
<td>2</td>
</tr>
<tr>
<td>Clean Firm</td>
<td>7</td>
</tr>
</tbody>
</table>
Net peak: September 8th 5pm

33 GW firm capacity needed

34 GW demand peak

Clean Energy Share: 20%
Wind Energy Value: 100%
Solar Energy Value: 100%
Wind Capacity Value: 9%
Solar Capacity Value: 4%
Over-generation: 0%

Clean firm
Gas
Wind & Solar
Over-generation
Demand

Wind & Solar
Gas
Clean firm
Over-generation
Demand

Clean Energy Share: 20%
Wind Energy Value: 100%
Solar Energy Value: 100%
Wind Capacity Value: 9%
Solar Capacity Value: 4%
Over-generation: 0%

Clean Energy Share: 20%
Wind Energy Value: 100%
Solar Energy Value: 100%
Wind Capacity Value: 9%
Solar Capacity Value: 4%
Over-generation: 0%

Clean Energy Share: 20%
Wind Energy Value: 100%
Solar Energy Value: 100%
Wind Capacity Value: 9%
Solar Capacity Value: 4%
Over-generation: 0%

Clean Energy Share: 20%
Wind Energy Value: 100%
Solar Energy Value: 100%
Wind Capacity Value: 9%
Solar Capacity Value: 4%
Over-generation: 0%

Clean Energy Share: 20%
Wind Energy Value: 100%
Solar Energy Value: 100%
Wind Capacity Value: 9%
Solar Capacity Value: 4%
Over-generation: 0%
Over-generation: 3%
Clean Energy Share: 40%
Wind Energy Value: 91%
Solar Energy Value: 77%
Wind Capacity Value: 9%
Solar Capacity Value: 4%
Net peak: September 8th, 5pm
Clean firm capacity needed: 32 GW
34 GW demand peak
32 GW firm capacity needed
Clean Energy Share: 60%
Wind Energy Value: 72%
Solar Energy Value: 59%
Over-generation: 7%
Wind Capacity Value: 2%
Solar Capacity Value: 2%

Net peak: August 19th, 6pm

Clean Energy Share: 60%
Wind Energy Value: 72%
Solar Energy Value: 59%
Over-generation: 7%
Wind Capacity Value: 2%
Solar Capacity Value: 2%

34 GW demand peak
31 GW firm capacity needed
Over-generation 28%

Wind Capacity Value 2%

Solar Capacity Value 2%

Net peak: August 19th 6pm

Clean Energy Share 80%

Wind Energy Value 25%

Solar Energy Value 20%

30 GW firm capacity needed

34 GW demand peak

30 GW firm capacity needed
Clean Energy Share: 80%
Wind Energy Value: 43%
Solar Energy Value: 34%
Over-generation: 11%
Wind Capacity Value: 2%
Solar Capacity Value: 2%
Net peak: August 19th 6pm

Clean Energy Share: 80%
Wind Energy Value: 43%
Solar Energy Value: 34%
Over-generation: 11%
Wind Capacity Value: 2%
Solar Capacity Value: 2%

30 GW firm capacity needed
34 GW demand peak
“Fast burst” balancing resources

“Fuel saving" variable renewables

“Firm” low-carbon resources

- Solar PV
- Solar thermal
- Wind energy
- Run-of-river hydro
- Solar thermal with storage
- Reservoir hydro
- Geothermal
- Nuclear
- Gas or coal w/CCS
- Zero carbon fuels
- Biomass
- Nuclear
- Gas or coal w/CCS
- Zero carbon fuels
- Biomass
- “Flexible base”
- Flexible demand (rescheduling)
- Battery storage
- Long-duration storage
- Demand response (price responsive curtailment)
A Race Between Declining Cost & Value
A RACE AGAINST DECLINING VALUE (SOLAR PV)

Solar PV average market value ($/MWh)

Solar PV market share (% of total annual energy)

- Germany (Hirth, 2013)
- California (Mills & Wiser, 2012)
- Texas (MIT Future of Solar Study, 2015)

2018 estimated solar PV levelized cost ($43/MWh)

Solar cost estimate for 2018 from Lazard (2018) op. cit. above.
1. Declining “fuel-saving” value (energy substitution)

2. Decreasing “capacity value” (capacity substitution)

3. Increasing “over-generation” (energy that must be stored or wasted when supply exceeds demand)

Additional factors (aka “integration costs”): Increasing flexibility, ramping and reserve requirements; thermal plant cycling costs; transmission network costs
A RACE AGAINST DECLINING VALUE (ENERGY STORAGE)

Energy storage average system value ($/kWh installed)

CO₂ Emissions Rate Limit (g/kWh)
- 150
- 100
- 50

Energy storage power capacity (% of peak system demand)

2018 estimated Li-ion storage installed cost ($330/kWh)

~64-77 percent below 2018 costs

1. “Niche” markets fill quickly for regulation & reserves

2. Increasing energy storage (longer duration) needed to maintain capacity substitution value

3. Reduced energy arbitrage (buy-sell) spread

4. Declining utilization rate
In the near-term, wind, solar, batteries (and coal to natural gas transition) can drive emissions reductions.
Fully decarbonizing electricity requires firm low-carbon substitutes for natural gas and retiring nuclear units.
The Role of Firm Low-Carbon Electricity Resources in Deep Decarbonization of Power Generation

Nestor A. Sepulveda • Jesse D. Jenkins • Fernando J. de Sisternes • Richard K. Lester

Published: September 08, 2018 • DOI: https://doi.org/10.1016/j.joule.2018.08.006

Highlights

- Firm low-carbon resources consistently lower decarbonized electricity system costs
- Availability of firm low-carbon resources reduces costs 10%–62% in zero-CO₂ cases
- Without these resources, electricity costs rise rapidly as CO₂ limits near zero
Average cost of electricity ($/MWh) vs. CO₂ emissions limit (g/kWh) for the Northern System.

One Possible Balanced Portfolio

- **Firm Low-carbon Resources** ("Flexible Base")
- **Fuel Saving Resources**
- **Fast Burst Resources**
Without Firm Low-Carbon Resources

Note 2x increase in y-axis scale

Fast Burst Resources

Fuel Saving Resources
Solar, wind & batteries will be stars...
...but firm resources complete the team
Carbon Capture and Storage
Zero Carbon Fuels

Image: Mitsubishi Heavy Industries
Hydropower with Large Reservoirs
Enhanced Geothermal Energy Systems
What about storage?
The *Dunkelflaute* ("Dark Doldrums")
Western Interconnection, Renewables + Storage Only
(24 hour rolling average power)

- **Wind, Solar, Hydro**
- **Demand**

- **68 days**
- **35 days**
Long Duration Storage Needed for Renewables + Storage Only Western Interconnection, 0 CO$_2$ emissions limit

(24 hour rolling average power)
Long Duration Storage Needed
Western Interconnection, Renewables + Storage Only
(24 hour rolling average power)

- H2 Storage State of Charge

33 terawatt-hours

2.4 billion Tesla Power Walls

Data source: Unpublished results, Jesse D. Jenkins, GenX model, Western Interconnection.
A very different kind of storage...

ENERGY STORAGE

Long Duration Breakthrough? Form Energy’s First Project Tries Pushing Storage to 150 Hours

Minnesota utility Great River Energy will use new storage technology from the Bill Gates-backed startup to replace coal power with dispatchable wind.

JULIAN SPECTOR | MAY 07, 2020

ENERGY STORAGE

Utah Aims to Shatter Records With 1,000MW Energy Storage Plant

The one-of-a-kind facility would combine compressed air storage in salt caverns with hydrogen storage, large flow batteries and solid-oxide fuel cells.

JULIAN SPECTOR | MAY 30, 2019
Jesse D. Jenkins
Assistant Professor
Department of Mechanical & Aerospace Engineering and Andlinger Center for Energy & Environment
Princeton University

jessejenkins@princeton.edu
Twitter: @JesseJenkins
Linkedin.com/in/jessedjenkins

UT Austin Energy Symposium Lecture, “Getting to Zero: What will it take to decarbonize electricity?” Watch: https://www.youtube.com/watch?v=F3YMIzK8d0o

Thank you for attending our webinar

Warren Leon
Executive Director, CESA
wleon@cleanegroup.org

Find us online:
www.cesa.org
facebook.com/cleanenergystates
@CESA_news on Twitter
Upcoming Webinars

Solar for All: The District of Columbia’s Innovative Strategy for Low-to Moderate-Income Solar
Wednesday, May 27, 2-3pm ET

Replacing New York City’s Dirty Peaker Power Plants with Renewables and Battery Storage
Thursday, May 28, 1-2:30pm ET

Read more and register at: www.cesa.org/webinars