Energy Storage Technology Advancement Partnership (ESTAP) Webinar: # Flow Battery Basics, Part 1: What They Are, How They Work, & Where They're Used June 19, 2014 # State & Federal Energy Storage Technology Advancement Partnership (ESTAP) Todd Olinsky-Paul Project Director Clean Energy States Alliance # **Thank You:** Dr. Imre Gyuk U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability **Dan Borneo**Sandia National Laboratories # **ESTAP** is a project of CESA Clean Energy States Alliance (CESA) is a non-profit organization providing a forum for states to work together to implement effective clean energy policies & programs: - Information Exchange - Partnership Development - Joint Projects (National RPS Collaborative, Interstate Turbine Advisory Council) - Clean Energy Program Design & Evaluations - Analysis and Reports CESA is supported by a coalition of states and public utilities representing the leading U.S. public clean energy programs. ## **ESTAP*** Overview Purpose: Create new DOE-state energy storage partnerships and advance energy storage, with technical assistance from Sandia National Laboratories **Focus:** Distributed electrical energy storage technologies Outcome: Near-term and ongoing project deployments across the U.S. with co-funding from states, project partners, and DOE * (Energy Storage Technology Advancement Partnership) # **ESTAP Key Activities** - 1. Disseminate information to stakeholders - ESTAP listsery >500 members - Webinars, conferences, information updates, surveys - Facilitate public/private partnerships at state level to support energy storage demonstration project development - Match bench-tested energy storage technologies with state hosts for demonstration project deployment - DOE/Sandia provide \$ for generic engineering, monitoring and assessment - Cost share \$ from states, utilities, foundations, other stakeholders ## **ESTAP Webinars** #### Policy Webinars: - Introduction to the Energy Storage Guidebook for State Utility Regulators - Briefing on Sandia's Maui Energy Storage Study - The Business Case for Fuel Cells 2012 - State Electricity Storage Policies - Highlights of the DOE/EPRI 2013 Electricity Storage Handbook in Collaboration with NRECA #### Technology Webinars: - Smart Grid, Grid Integration, Storage and Renewable Energy - East Penn and Ecoult Battery Installation Case Study - Energy Storage Solutions for Microgrids - Applications for Redox Flow Batteries - Introduction to Fuel Cell Applications for Microgrids and Critical Facilities - UCSD Microgrid # Today's Guest Speakers **Imre Gyuk**, Program Manager, Energy Storage Research, Office of Electricity Distribution and Energy Reliability, U.S. Department of Energy **Dan Borneo**, Engineering Project Manager, Distributed Energy/ Electrical Energy Storage, Sandia National Laboratories **Summer Ferreira**, Senior Member of Technical Staff, Sandia National Laboratories Charlie Vartanian, Marketing Director, UniEnergy Technologies (UET) Craig Horne, Chief Strategy Office and Co-Founder, EnerVault # Flow Batteries for Bulk Energy Storage ## IMRE GYUK, PROGRAM MANAGER ENERGY STORAGE RESEARCH, DOE ## Flow Batteries decouple Power from Energy: - Power is produced by a rechargable Electrochemical Cell - Energy is stored in Tanks of electrolyte ## This is analogous to a car: - Power comes from the Engine - Energy is in the gasoline Tank # The Periodic Table | 1
H | | | | | | | | | | | | | | | | | 2
He | |----------------|----------|----------------|------------------|----------------|-----------|-----------|---------------------|-----------|-----------|-----------|-----------|-----------------|-----------|-----------------|-----------------|------------|------------------| | 3
Li | 4
Be | | | | | | | | | | | 5
B | C
e | 7
N | 8
O | 9
F | 10
Ne | | 11
Na | 12
Mg | | | | | | | | | | | 13
AI | 14
Si | 15
P | 16
S | 17
CI | 18
Ar | | 19
K | 20
Ca | 21
Sc | 22
Ti | 23
V | 24
Cr | 25
Mn | ²⁶
Fe | 27
Co | 28
Ni | 29
Cu | 30
Zn | 31
Ga | 32
Ge | 33
As | 34
Se | 35
Br | 36
K r | | 37
Rb | 38
Sr | 39
Y | 40
Zr | 41
Nb | 42
Mo | 43
Tc | 44
Ru | 45
Rh | 46
Pd | 47
Ag | 48
Cd | 49
In | 50
Sn | 51
Sb | 52
Te | 53
 | 54
Xe | | 55
Cs | 56
Ba | 57-71 | 72
Hf | 73
Ta | 74
W | 75
Re | 76
Os | 77
 r | 78
Pt | 79
Au | 80
Hg | 81
TI | 82
Pb | 83
Bi | 84
Po | 85
At | 86
Rn | | 87
Fr | 88
Ra | 89-103 | 104
Rf | 105
Db | 106
Sg | 107
Bh | 108
Hs | 109
Mt | 110
Ds | 111
Rg | 112
Cn | 113
Uut | 114
FI | 115
Uup | 116
Lv | 117
Uus | 118
Uuo | | | | 57
La | 58
Ce | 59
Pr | 60
Nd | 61
Pm | 62
Sm | 63
Eu | 64
Gd | 65
Tb | 66
Dy | 67
Ho | 68
Er | 69
Tm | 70
Yb | 71
Lu | | | | | 89
Ac | 90
Th | 91
Pa | 92
U | 93
Np | 94
Pu | 95
Am | 96
Cm | 97
Bk | 98
Cf | 99
Es | 100
Fm | 101
Md | 102
No | 103
Lr | | ## We want high Potential! # ARRA - Enervault: 250kW/4hr Fe-Cr Flow Battery PV: 300 kW Storage: 250 KW Peak output: 450kW Storage Cost: +16% Storage Value: +84% Commissioned May 22, 2014 Installation of Tanks at Turlock Tracking PV in Almond Grove Leveraging PV with Storage ### Washington State Clean Energy Fund: Solicitation for \$15M for Utility Energy Storage Projects Submitted Projects with UET V/V technology: - Snohomish PUD (2MW / 6.4MWh) PNNL -- U of WA - Avista (1MW / 3.2MWh) PNNL -- 1 Energy -- WA State UET V/V technology was developed at PNNL with DOE-OE funding PNNL will participate in both Proposals, with benefit optimization studies. #### Exceptional service in the national interest ### Flow Batteries Introduction to flow batteries Clean Energy States Alliance Webinar June 19, 2014 Summer R. Ferreira, Travis M. Anderson, Org. 2546, Advanced Power Sources R&D # **Energy Storage Services** "Storage is a vital tool that would uncouple customer demand from the generation side of the grid, thereby allowing vital flexibility in control and maintenance of the electric grid."* **End-Use** Renewable Penetration Transmission and Distribution Generation - Reduce carbon footprint - Provide buffer for the grid - Smart grid integration Costs are the main barrier # **Stationary Storage** | Technology | Power rating | Discharge
Duration (h) | Cost
(\$/kWh) | Cycle life | |---------------------|------------------|---------------------------|------------------|-------------------| | Pumped Hydro | 10's MW -
GWs | >8 | 80-200 | 20,000-
50,000 | | CAES | 10's MW -
GWs | 0.25 | 50-120 | 9,000-
30,000 | | Lead-acid batteries | kw -10's
MWs | 0.1-4 | 350-
1500 | 200-
1,500 | | Li ion batteries | kW-100's
MW | 0.1-1 | 850-
5000 | 5,000-
7,000 | | Flow batteries | kW-100's
MW | 1-20 | 180-250 | 5,000-
14,000+ | ## Flow Batteries and Renewables # Flow Battery energy storage technology utilizing redox states of various species for charge/discharge purposes The "fish tank" schematic does not represent a specific chemistry. # Early Development **Open Circuit** Potential (OCP) 1.2 V $Fe^{2+} \leftarrow Fe^{3+} + e^{-}$ $$Cr^{2+} \leftarrow Cr^{3+} + e^{-}$$ requires electrocatalyst Zn/Cl hydrate battery in 1968¹ Fe/Cr RFB in the 1970s² # All-Vanadium Battery # **Cell Configuration** # **Hybrid Flow Batteries** Higher energy density than the all-vanadium system at the expense of toxicity, dendrite formation, higher self-discharge, plate stripping required ## Sandia's OE Portfolio in Flow Batteries Research enables applied analysis, applied analysis enables research. The goal is to assist toward greater deployment on the grid. #### Research #### **Applied Analysis** Membrane Development Separators/membranes identified as high-cost bottleneck **Battery Modeling** Non-Aqueous Chemistries Power System Reliability Control algorithms System testing **Demonstration Projects** **Grid-Level Integration Analysis** Regulatory and Policy Analysis Demonstrations of flow battery technologies since the 1980s and 1990s. More installations and larger projects are being seen. # Acknowledgments - Dr. Imre Gyuk, Energy Storage Program, Office of Electricity Delivery and Energy Reliability - Sean Hearne, Program Manager - Miles Hall, Economics - Chris Brigman, Sandia Creative Arts # Enervault Safe, Reliable, Cost-Effective Energy Storage # LONG-DURATION, GRID-SCALE IRON-CHROMIUM REDOX FLOW BATTERY SYSTEMS Craig R Horne, Ph.D. Chief Strategy Officer & Co-Founder **ESTAP Webinar** #### **Company Overview** #### Focus: Long-duration, grid-scale energy storage... #### **Distinction:** Long duration storage at constant power Unparalleled safety, reliability, and low cost Configurable & scalable design optimizes costs Fe³⁺/Fe²⁺ (positive) 250 kW_{AC} 4 hour Cr2+/Cr3+ (negative) #### International Network And Wide Recognition Supported by leading global corporations and funding agencies recognition & associations investors OCEANSHORE VENTURES COMMERCIAL ENERGY **Your Best Choice** ENERGY #### grant awards #### partners **BEW Engineering** (CA) #### Applications - \$1B in Procurements Underway! Enerva #### **Peak Capacity +** 12-50 MW/4 to 12 hrs #### **Clean Resilient Systems** 2 to 75 MW/6 to 48 hours Configurable energy & power capacity plus low-cost energy capacity -> CapEx curve matches value curve #### **EnerVault Technology** # Iron-chromium Redox Flow Battery # First studied by NASA in 70s/80s - + low cost - + robust - + abundant - + safe #### **EnerVault** - + novel architecture for sustained power - + innovations that make Fe/Cr commercial Discharge reaction $$Cr^{2+} \rightarrow Cr^{3+} + e^{-}$$ $$Fe^{3+} + e^{-} \rightarrow Fe^{2+}$$ Charge reaction $$Cr^{3+} + e^- \rightarrow Cr^{2+}$$ $$Fe^{2+} \rightarrow Fe^{3+} + e^{-}$$ #### **Redox Flow Battery Architectures** - Fast response to power change - Narrow state of charge range - Lower Efficiency - · Long duration steady power - Wide state of charge range - Higher Efficiency #### **Product Characteristics** #### **Duration extended by simply increasing electrolyte volume** Configurable energy & power capacity plus low-cost energy capacity → CapEx curve matches value curve adapted from: Wadia et al., J. Power Sources 196(2011)1593-1598 #### Delivered Fe/Cr Technology To The Field 2014 $250~kW_{AC}/1~MW-hr$ Turlock Field System 30 kW Pilot System 2010 2 kW/1 hr Test Unit #### see highlights at: #### http://enervault.com/enervault-turlock-dedication "Redox flow batteries may hold great potential for replacing gas-fired peaking power plants, and for providing badly needed grid stabilization services." Peter Kelly-Detwiler, Forbes #### **Bringing Fe/Cr Systems To Market** #### Leverage electrochemical process industry expertise... 2014 > 2015 > 2016 Demonstrate 250 kW_{AC} 1 MW-hr Field System Deliver 1-2 MW_{AC} IS Systems Launch 10+ MW_{AC} GS Systems #### Leverage Existing Industry Capabilities Established relationships supporting design, fabrication, controls, & deployment #### **NORAM Engineering** - Vancouver, BC - Founded 1988, private, global project portfolio **DNV-GL** BEW Engineering (CA) #### **System Scaling** tunable, higher availability #### **Aggregated Energy:** lower cost, better operability, lower maintenance **Energy Storage Capacity (hours)** ### **THANK YOU** # Uni.System™: Advanced Vanadium Flow Battery System for Grid Applications **June 19, 2014** Flow Battery Basics, Part 1: What They Are, How They Work, Where They're Used #### **About Flow Batteries** - Separation of - Energy (kWh) electrolytes - Power (kW) cell stacks - "Inert" electrodes no stress buildup or structural degradation in electrodes - Extended electrode durability/reliability - Long cycle life, independent of SOC/DOD - ☐ Effectively stop reactions by turning pumps off no thermal runaway **safe** - Stores up to MWh's/MW's of electricity, with durations from mins up to hrs and even days – grid scale solutions - □ Passive heat management flowing electrolytes carry away heat generated; large volumes of electrolytes act as heat sinks -high reliability & efficiency ### UET's Core Technology: Stable and Powerful Vanadium ### **UET** ### Chemistry Cathode: $VO_2Cl + 2H^+ + e^- \leftrightarrow VO^{2+} + Cl^- + H_2O$ Anode: $V^{2+} - e^- \leftrightarrow V^{3+}$ Cell: $VO_2Cl + V^{2+} + 2H^+ \leftrightarrow VO^{2+} + V^{3+} + Cl^- + H_2O$ New molecule designed with PNNL's supercomputing and advanced analysis equipment - Team of 20 scientists led by Dr. Gary Yang & Dr. Liyu Li who then founded UET in 2012 - Won the US Government' highest Award of Excellence in Technology Transfer to UET - > Extraordinary electrolyte stability - » stable from -40 °C to +50°C - ≥ 2X energy density improvement→ 5X footprint reduction - > Inherent Safety - » Non flammable - » No thermal runa wayntainerization - » Reduced chemical volume - » Nonreactive with water ### 2015 Uni.System.AC™: 500kW/4h; 600kW_{peak}; 2.2MWh_{max} - ✓ Inherently Safe Water based, No thermal runaway - ✓ Robust and Reliable 20 year life, No degradation - ✓ Operationally Flexible 100% capacity access, Stack values ✓ Scalable Architecture System footprint 20MW/acre - ✓ Wide Temperature Range -40 °C to +50 °C - ✓ Factory Integration precision assembly & QC - ✓ Plug & Play rapid incremental deployment - 97% Availability no stripping or equalizing - ✓ 100% Recyclable disposal contract included ### Scalable: 10 MW 40MWh concept #### <u>Uni.System.AC</u>™ "Energy Farm" - √ 10MW/40MWh Uni.System.AC™ - ✓ 12MW_{AC} peak power rating - √ 44MWh_{AC} maximum discharge capacity - ✓ Radiant Barrier for Energy Farm - ✓ Low cost PV with Uni.System™ support structure - ✓ Eligible for tax incentives - √ 250kW array yielding 500MWh/y #### **Total PV+Storage Footprint** - ✓ 20MW/acre - √ 8" thick concrete slab ### Operationally Flexible The Uni.System™ is uniquely capable of performing short and long duration applications simultaneously Data from completed factory testing results. ### Flexible, Operable Over Diverse Time Scales Storage Applications Have Diverse Timefames and Require Flexible Storage Solutions ### Flexible, Stacking to Deliver Cost Effective Solutions | | Use Case | Benefits | Traditional Solutions | Value Basis | Client Type | |--|---|---|--|--|--| | T-Connected
Bulk Storage | Peaker,
Resource | Resource Services,
Capacity, Energy,
A/S | СТ | PPA, Mkt Rev,
Avoided Cost | Developer,
Utility | | | T&D Capacity | Deliverability,
Reliability,
Resiliency | Line &
Substation
Expansion | Avoided Cost,
NERC Compl.,
FTR revenue | Utility,
Developer | | Distribution Energy Storage | Distributed
Peaker | Resource Services,
Resiliency,
Microgrids | Circuit & Substation Expansion, CT, DG | PPA, Mkt Rev,
Avoided Cost | Developer,
Integrator,
Utility | | | Substation & Circuit Sited Storage | Resource Services, Wires Capacity, Resiliency, Microgrids | Circuit and
Substation
Expansion, DG | Mkt Rev,
Avoided Cost,
SAIFI/SAIDI | Utility | | | Renewble
Mitigation and
Integration | Ramp Mngt, Curtailment Reduction, Diesel Reduction | none | PPA, Avoided
Cost Savings | Developer,
Integrator,
Utility | | Behind-the-
Meter Energy
Storage | Behind the
Meter | Bill Reduction, PQ | DR, DG | Bill Savings | Util Cust,
Developer,
Integrator | | | Behind the
Meter Utility
Controlled | Bill Reduction,
Avoid Cost, Market
\$, Grid Rel | Circuit Upgrade,
DR, DG | Bill Savings,
Avoided Cost | Utility
Developer,
Integrator | ^{*} Summary slide from STRATEGEN at ESNA conference in September, 2013 ### Backup Slides | | 2015 Uni.System.AC™ | | | | | |------------------------|--|---------------------------------|----------------------|--|--| | Peak Power | | 600 kW _{AC} | | | | | Maximum Energy | 2.2 MWh _{AC} | | | | | | Discharge time | 2 h | 4 h | 8 h | | | | Power | 600 kW _{AC} | 500 kW _{AC} | 275 kW _{AC} | | | | AC Efficiency | | 65-70% | | | | | Voltage | | 12.47kV +/- 10% | | | | | Current THD (IEEE 519) | <5%THD | | | | | | Response Time | <100ms | | | | | | Reactive Power | +/- 450kVAR | | | | | | Humidity | 95% | 95%RH noncondensing | | | | | Footprint | 820 ft ² | | | | | | Envelope | 4: | 41'W x 20'D x 9.5'H | | | | | Total Weight | 170,000 kg | | | | | | Cycle and Design Life | Cycle and Design Life Unlimited cycles over the 20 year life | | | | | | Ambient Temp. | -40°C t | -40°C to 50°C (-40°F to 122°F) | | | | | Self Discharge | Max capacity loss: <2% | | | | | ### UniEnergy Technologies (UET) *Vision*: Become a major global provider of bulk energy storage solutions through *innovation*, *quality and strategic partnerships* We are accomplishing this by commercializing a break-through redox flow battery product with new generation high performance electrolytes, field-proven stacks, optimized control/power electronics, and refined "plug & play" containerization **Achievement**: UET has successfully developed and deployed the world's first flow battery product fully integrated into a single shipping container for rapid and flexible grid deployment ### **UET Capabilities** - State-of-the-art R&D lab and world class scientists - Leading engineering team with decades of experience in flow battery and related industries - Precision assembly & QC, ramping up production to 100MW per year in the next 2~3 years - Seasoned sales & marketing team ### UET's DNA and Strategic Partnerships #### **NEW ELECTROLYTE** - 2X power and energy density - \checkmark -40°C to +50°C - ✓ Improved safety DOE #### **PRODUCT ENGINEERING AND MANUFACTURING** 67,000ft² design, development & manufacturing facility in Seattle #### FIELD EXPERIENCE - ✓ 5MW/10MWh wind firming installation - ✓ Numerous MW-class microgrid sites #### **ELECTROLYTE PRODUCTION** - ✓ 1,324,000 ft² production facilities - Electrolyte production capacity > 1.5GWh/year - ISO9001:2008 Certified #### STACK PRODUCTION - √ 108,000 ft² manufacturing facility - 100MW production capacity - ISO9000/14000, GB/T28001 Certified ## Thank You Charlie Vartanian 1-626-828-5230 Charles.Vartanian@uetechnologies.com www.uetechnologies.com ### **ESTAP Contact Information** CESA Project Director: Sandia Project Director: **Todd Olinsky-Paul** Dan Borneo (Todd@cleanegroup.org) (drborne@sandia.gov) Webinar Archive: www.cesa.org/webinars ESTAP Website: http://www.cesa.org/projects/ energy-storage-technology-advancement-partnership/ ESTAP Listserv: http://www.cesa.org/projects/energy-storage-technology-advancement-partnership/energy-storage-listserv-signup/