

Energy Storage Technology Advancement Partnership (ESTAP) Webinar:

Flow Battery Basics, Part 1: What They Are, How They Work, & Where They're Used

June 19, 2014

State & Federal Energy Storage Technology Advancement Partnership (ESTAP)

Todd Olinsky-Paul
Project Director
Clean Energy States Alliance

Thank You:

Dr. Imre Gyuk

U.S. Department of Energy,
Office of Electricity Delivery and
Energy Reliability

Dan BorneoSandia National Laboratories

ESTAP is a project of CESA

Clean Energy States Alliance (CESA) is a non-profit organization providing a forum for states to work together to implement effective clean energy policies & programs:

- Information Exchange
- Partnership Development
- Joint Projects (National RPS Collaborative, Interstate Turbine Advisory Council)
- Clean Energy Program Design & Evaluations
- Analysis and Reports

CESA is supported by a coalition of states and public utilities representing the leading U.S. public clean energy programs.

ESTAP* Overview

Purpose: Create new DOE-state energy storage partnerships and advance energy storage, with technical assistance from Sandia National Laboratories

Focus: Distributed electrical energy storage technologies

Outcome: Near-term and ongoing project deployments across the U.S. with co-funding from states, project partners, and DOE

* (Energy Storage Technology Advancement Partnership)

ESTAP Key Activities

- 1. Disseminate information to stakeholders
 - ESTAP listsery >500 members
 - Webinars, conferences, information updates, surveys
- Facilitate public/private partnerships at state level to support energy storage demonstration project development
 - Match bench-tested energy storage technologies with state hosts for demonstration project deployment
 - DOE/Sandia provide \$ for generic engineering, monitoring and assessment
 - Cost share \$ from states, utilities, foundations, other stakeholders

ESTAP Webinars

Policy Webinars:

- Introduction to the Energy Storage Guidebook for State Utility Regulators
- Briefing on Sandia's Maui Energy Storage Study
- The Business Case for Fuel Cells 2012
- State Electricity Storage Policies
- Highlights of the DOE/EPRI 2013 Electricity Storage Handbook in Collaboration with NRECA

Technology Webinars:

- Smart Grid, Grid Integration, Storage and Renewable Energy
- East Penn and Ecoult Battery Installation Case Study
- Energy Storage Solutions for Microgrids
- Applications for Redox Flow Batteries
- Introduction to Fuel Cell Applications for Microgrids and Critical Facilities
- UCSD Microgrid

Today's Guest Speakers

Imre Gyuk, Program Manager, Energy Storage Research, Office of Electricity Distribution and Energy Reliability, U.S. Department of Energy

Dan Borneo, Engineering Project Manager, Distributed Energy/ Electrical Energy Storage, Sandia National Laboratories

Summer Ferreira, Senior Member of Technical Staff, Sandia National Laboratories

Charlie Vartanian, Marketing Director, UniEnergy Technologies (UET)

Craig Horne, Chief Strategy Office and Co-Founder, EnerVault

Flow Batteries for Bulk Energy Storage

IMRE GYUK, PROGRAM MANAGER ENERGY STORAGE RESEARCH, DOE

Flow Batteries decouple Power from Energy:

- Power is produced by a rechargable Electrochemical Cell
- Energy is stored in Tanks of electrolyte

This is analogous to a car:

- Power comes from the Engine
- Energy is in the gasoline Tank

The Periodic Table

1 H																	2 He
3 Li	4 Be											5 B	C e	7 N	8 O	9 F	10 Ne
11 Na	12 Mg											13 AI	14 Si	15 P	16 S	17 CI	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	²⁶ Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 K r
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
55 Cs	56 Ba	57-71	72 Hf	73 Ta	74 W	75 Re	76 Os	77 r	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	89-103	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 FI	115 Uup	116 Lv	117 Uus	118 Uuo
		57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	
		89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	

We want high Potential!

ARRA - Enervault: 250kW/4hr Fe-Cr Flow Battery

PV: 300 kW

Storage: 250 KW

Peak output: 450kW Storage Cost: +16% Storage Value: +84%

Commissioned May 22, 2014

Installation of Tanks at Turlock

Tracking PV in Almond Grove

Leveraging PV with Storage

Washington State Clean Energy Fund:

Solicitation for \$15M for Utility Energy Storage Projects

Submitted Projects with UET V/V technology:

- Snohomish PUD (2MW / 6.4MWh) PNNL -- U of WA
- Avista (1MW / 3.2MWh) PNNL -- 1 Energy -- WA State

UET V/V technology was developed at PNNL with DOE-OE funding

PNNL will participate in both Proposals, with benefit optimization studies.

Exceptional service in the national interest

Flow Batteries

Introduction to flow batteries

Clean Energy States Alliance Webinar June 19, 2014

Summer R. Ferreira, Travis M. Anderson, Org. 2546, Advanced Power Sources R&D

Energy Storage Services

"Storage is a vital tool that would uncouple customer demand from the generation side of the grid, thereby allowing vital flexibility in

control and maintenance of the electric grid."*

End-Use

Renewable Penetration

Transmission and Distribution

Generation

- Reduce carbon footprint
- Provide buffer for the grid
- Smart grid integration

Costs are the main barrier

Stationary Storage

Technology	Power rating	Discharge Duration (h)	Cost (\$/kWh)	Cycle life
Pumped Hydro	10's MW - GWs	>8	80-200	20,000- 50,000
CAES	10's MW - GWs	0.25	50-120	9,000- 30,000
Lead-acid batteries	kw -10's MWs	0.1-4	350- 1500	200- 1,500
Li ion batteries	kW-100's MW	0.1-1	850- 5000	5,000- 7,000
Flow batteries	kW-100's MW	1-20	180-250	5,000- 14,000+

Flow Batteries and Renewables

Flow Battery

 energy storage technology utilizing redox states of various species for charge/discharge purposes

The "fish tank" schematic does not represent a specific chemistry.

Early Development

Open Circuit Potential (OCP)

1.2 V

 $Fe^{2+} \leftarrow Fe^{3+} + e^{-}$

$$Cr^{2+} \leftarrow Cr^{3+} + e^{-}$$

requires electrocatalyst

Zn/Cl hydrate battery in 1968¹ Fe/Cr RFB in the 1970s²

All-Vanadium Battery

Cell Configuration

Hybrid Flow Batteries

Higher energy density than the all-vanadium system at the expense of toxicity, dendrite formation, higher self-discharge, plate stripping required

Sandia's OE Portfolio in Flow Batteries

Research enables applied analysis, applied analysis enables research.

The goal is to assist toward greater deployment on the grid.

Research

Applied Analysis

Membrane Development

Separators/membranes

identified as high-cost

bottleneck

Battery Modeling

Non-Aqueous Chemistries

Power System Reliability

Control algorithms

System testing

Demonstration Projects

Grid-Level Integration Analysis

Regulatory and Policy Analysis

Demonstrations of flow battery technologies since the 1980s and 1990s. More installations and larger projects are being seen.

Acknowledgments

- Dr. Imre Gyuk, Energy Storage Program, Office of Electricity Delivery and Energy Reliability
- Sean Hearne, Program Manager
- Miles Hall, Economics
- Chris Brigman, Sandia Creative Arts

Enervault Safe, Reliable, Cost-Effective Energy Storage

LONG-DURATION, GRID-SCALE IRON-CHROMIUM REDOX FLOW BATTERY SYSTEMS

Craig R Horne, Ph.D.
Chief Strategy Officer & Co-Founder

ESTAP Webinar

Company Overview

Focus:

Long-duration, grid-scale energy storage...

Distinction:

Long duration storage at constant power
Unparalleled safety, reliability, and low cost
Configurable & scalable design optimizes costs

Fe³⁺/Fe²⁺
(positive)

250 kW_{AC} 4 hour

Cr2+/Cr3+

(negative)

International Network And Wide Recognition

Supported by leading global corporations and funding agencies recognition & associations

investors

OCEANSHORE VENTURES

COMMERCIAL ENERGY **Your Best Choice**

ENERGY

grant awards

partners

BEW Engineering (CA)

Applications - \$1B in Procurements Underway! Enerva

Peak Capacity +

12-50 MW/4 to 12 hrs

Clean Resilient Systems

2 to 75 MW/6 to 48 hours

Configurable energy & power capacity plus low-cost energy capacity -> CapEx curve matches value curve

EnerVault Technology

Iron-chromium Redox Flow Battery

First studied by NASA in 70s/80s

- + low cost
- + robust
- + abundant
- + safe

EnerVault

- + novel architecture for sustained power
- + innovations that make Fe/Cr commercial

Discharge reaction

$$Cr^{2+} \rightarrow Cr^{3+} + e^{-}$$

$$Fe^{3+} + e^{-} \rightarrow Fe^{2+}$$

Charge reaction

$$Cr^{3+} + e^- \rightarrow Cr^{2+}$$

$$Fe^{2+} \rightarrow Fe^{3+} + e^{-}$$

Redox Flow Battery Architectures

- Fast response to power change
- Narrow state of charge range
- Lower Efficiency

- · Long duration steady power
- Wide state of charge range
- Higher Efficiency

Product Characteristics

Duration extended by simply increasing electrolyte volume

Configurable energy & power capacity plus low-cost energy capacity

→ CapEx curve matches value curve

adapted from: Wadia et al., J. Power Sources 196(2011)1593-1598

Delivered Fe/Cr Technology To The Field

2014

 $250~kW_{AC}/1~MW-hr$

Turlock Field System

30 kW Pilot System

2010

2 kW/1 hr Test Unit

see highlights at:

http://enervault.com/enervault-turlock-dedication

"Redox flow batteries may hold great potential for replacing gas-fired peaking power plants, and for providing badly needed grid stabilization services."

Peter Kelly-Detwiler, Forbes

Bringing Fe/Cr Systems To Market

Leverage electrochemical process industry expertise...

2014 > 2015 > 2016

Demonstrate 250 kW_{AC} 1 MW-hr Field System

Deliver 1-2 MW_{AC}
IS Systems

Launch 10+ MW_{AC}
GS Systems

Leverage Existing Industry Capabilities

Established relationships supporting design, fabrication, controls, & deployment

NORAM Engineering

- Vancouver, BC
- Founded 1988, private, global project portfolio

DNV-GL BEW Engineering (CA)

System Scaling

tunable, higher availability

Aggregated Energy:

lower cost, better operability, lower maintenance

Energy Storage Capacity (hours)

THANK YOU

Uni.System™: Advanced Vanadium Flow Battery System for Grid Applications

June 19, 2014

Flow Battery Basics, Part 1: What They Are, How They Work, Where They're Used

About Flow Batteries

- Separation of
- Energy (kWh) electrolytes
- Power (kW) cell stacks
- "Inert" electrodes no stress buildup or structural degradation in electrodes
- Extended electrode durability/reliability
- Long cycle life, independent of SOC/DOD
- ☐ Effectively stop reactions by turning pumps off no thermal runaway **safe**
- Stores up to MWh's/MW's of electricity, with durations from mins up to hrs and even days – grid scale solutions
- □ Passive heat management flowing electrolytes carry away heat generated; large volumes of electrolytes act as heat sinks -high reliability & efficiency

UET's Core Technology: Stable and Powerful Vanadium

UET

Chemistry

Cathode: $VO_2Cl + 2H^+ + e^- \leftrightarrow VO^{2+} + Cl^- + H_2O$

Anode: $V^{2+} - e^- \leftrightarrow V^{3+}$

Cell: $VO_2Cl + V^{2+} + 2H^+ \leftrightarrow VO^{2+} + V^{3+} + Cl^- + H_2O$

New molecule designed with PNNL's supercomputing and advanced analysis equipment

- Team of 20 scientists led by Dr. Gary Yang & Dr. Liyu Li who then founded UET in 2012
- Won the US Government' highest Award of Excellence in Technology Transfer to UET
- > Extraordinary electrolyte stability
 - » stable from -40 °C to +50°C
- ≥ 2X energy density improvement→ 5X footprint reduction
- > Inherent Safety
 - » Non flammable
 - » No thermal runa wayntainerization
 - » Reduced chemical volume
 - » Nonreactive with water

2015 Uni.System.AC™: 500kW/4h; 600kW_{peak}; 2.2MWh_{max}

- ✓ Inherently Safe

 Water based, No thermal runaway
- ✓ Robust and Reliable 20 year life, No degradation
- ✓ Operationally Flexible 100% capacity access, Stack values

✓ Scalable Architecture System footprint 20MW/acre

- ✓ Wide Temperature Range -40 °C to +50 °C
- ✓ Factory Integration

 precision assembly & QC

- ✓ Plug & Play rapid incremental deployment
- 97% Availability no stripping or equalizing
- ✓ 100% Recyclable disposal contract included

Scalable: 10 MW 40MWh concept

<u>Uni.System.AC</u>™ "Energy Farm"

- √ 10MW/40MWh Uni.System.AC™
- ✓ 12MW_{AC} peak power rating
- √ 44MWh_{AC} maximum discharge capacity

- ✓ Radiant Barrier for Energy Farm
- ✓ Low cost PV with Uni.System™ support structure
- ✓ Eligible for tax incentives
- √ 250kW array yielding 500MWh/y

Total PV+Storage Footprint

- ✓ 20MW/acre
- √ 8" thick concrete slab

Operationally Flexible

The Uni.System™ is uniquely capable of performing short and long duration applications simultaneously

Data from completed factory testing results.

Flexible, Operable Over Diverse Time Scales

Storage Applications Have Diverse Timefames and Require
Flexible Storage Solutions

Flexible, Stacking to Deliver Cost Effective Solutions

	Use Case	Benefits	Traditional Solutions	Value Basis	Client Type
T-Connected Bulk Storage	Peaker, Resource	Resource Services, Capacity, Energy, A/S	СТ	PPA, Mkt Rev, Avoided Cost	Developer, Utility
	T&D Capacity	Deliverability, Reliability, Resiliency	Line & Substation Expansion	Avoided Cost, NERC Compl., FTR revenue	Utility, Developer
Distribution Energy Storage	Distributed Peaker	Resource Services, Resiliency, Microgrids	Circuit & Substation Expansion, CT, DG	PPA, Mkt Rev, Avoided Cost	Developer, Integrator, Utility
	Substation & Circuit Sited Storage	Resource Services, Wires Capacity, Resiliency, Microgrids	Circuit and Substation Expansion, DG	Mkt Rev, Avoided Cost, SAIFI/SAIDI	Utility
	Renewble Mitigation and Integration	Ramp Mngt, Curtailment Reduction, Diesel Reduction	none	PPA, Avoided Cost Savings	Developer, Integrator, Utility
Behind-the- Meter Energy Storage	Behind the Meter	Bill Reduction, PQ	DR, DG	Bill Savings	Util Cust, Developer, Integrator
	Behind the Meter Utility Controlled	Bill Reduction, Avoid Cost, Market \$, Grid Rel	Circuit Upgrade, DR, DG	Bill Savings, Avoided Cost	Utility Developer, Integrator

^{*} Summary slide from STRATEGEN at ESNA conference in September, 2013

Backup Slides

	2015 Uni.System.AC™				
Peak Power		600 kW _{AC}			
Maximum Energy	2.2 MWh _{AC}				
Discharge time	2 h	4 h	8 h		
Power	600 kW _{AC}	500 kW _{AC}	275 kW _{AC}		
AC Efficiency		65-70%			
Voltage		12.47kV +/- 10%			
Current THD (IEEE 519)	<5%THD				
Response Time	<100ms				
Reactive Power	+/- 450kVAR				
Humidity	95%	95%RH noncondensing			
Footprint	820 ft ²				
Envelope	4:	41'W x 20'D x 9.5'H			
Total Weight	170,000 kg				
Cycle and Design Life	Cycle and Design Life Unlimited cycles over the 20 year life				
Ambient Temp.	-40°C t	-40°C to 50°C (-40°F to 122°F)			
Self Discharge	Max capacity loss: <2%				

UniEnergy Technologies (UET)

Vision: Become a major global provider of bulk energy storage solutions through *innovation*, *quality and strategic partnerships*

We are accomplishing this by commercializing a break-through redox flow battery product with new generation high performance electrolytes, field-proven stacks, optimized control/power electronics, and refined "plug & play" containerization

Achievement: UET has successfully developed and deployed the world's first flow battery product fully integrated into a single shipping container for rapid and flexible grid deployment

UET Capabilities

- State-of-the-art R&D lab and world class scientists
- Leading engineering team with decades of experience in flow battery and related industries
- Precision assembly & QC, ramping up production to 100MW per year in the next 2~3 years
- Seasoned sales & marketing team

UET's DNA and Strategic Partnerships

NEW ELECTROLYTE

- 2X power and energy density
- \checkmark -40°C to +50°C
- ✓ Improved safety

DOE

PRODUCT ENGINEERING AND MANUFACTURING

67,000ft² design, development & manufacturing facility in Seattle

FIELD EXPERIENCE

- ✓ 5MW/10MWh wind firming installation
- ✓ Numerous MW-class microgrid sites

ELECTROLYTE PRODUCTION

- ✓ 1,324,000 ft² production facilities
- Electrolyte production capacity > 1.5GWh/year
- ISO9001:2008 Certified

STACK PRODUCTION

- √ 108,000 ft² manufacturing facility
- 100MW production capacity
- ISO9000/14000, GB/T28001 Certified

Thank You

Charlie Vartanian 1-626-828-5230

Charles.Vartanian@uetechnologies.com www.uetechnologies.com

ESTAP Contact Information

CESA Project Director:

Sandia Project Director:

Todd Olinsky-Paul

Dan Borneo

(Todd@cleanegroup.org)

(drborne@sandia.gov)

Webinar Archive: www.cesa.org/webinars

ESTAP Website: http://www.cesa.org/projects/ energy-storage-technology-advancement-partnership/

ESTAP Listserv: http://www.cesa.org/projects/energy-storage-technology-advancement-partnership/energy-storage-listserv-signup/

