Replacing Diesel in an Alaskan Community: Cordova’s New Battery Energy Storage System

May 7, 2020
Housekeeping

Join audio:
• Choose Mic & Speakers to use VoIP
• Choose Telephone and dial using the information provided

Use the orange arrow to open and close your control panel

Submit questions and comments via the Questions panel

This webinar is being recorded. We will email you a webinar recording within 48 hours. This webinar will be posted on CESA’s website at www.cesa.org/webinars
The Energy Storage Technology Advancement Partnership (ESTAP) is a US DOE-OE funded federal/state partnership project conducted under contract with Sandia National Laboratories.

ESTAP Key Activities:

1. Disseminate information to stakeholders
 - ESTAP listserv >3,000 members
 - Webinars, conferences, information updates, surveys.

2. Facilitate public/private partnerships to support joint federal/state energy storage demonstration project deployment

3. Support state energy storage efforts with technical, policy and program assistance
Thank You:

Dr. Imre Gyuk
Director, Energy Storage Research,
U.S. Department of Energy

Dan Borneo
Engineering Project/Program Lead,
Sandia National Laboratory
Webinar Speakers

• **Dr. Imre Gyuk**, Director, Energy Storage Research, U.S. Department of Energy
• **Clay Koplin**, CEO, Cordova Electric Cooperative, and Mayor of Cordova, Alaska
• **Scott Newlun**, Manager of Generation and Distribution, Cordova Electric Cooperative
• **Nathan Cain**, Power Production Foreman, Cordova Electric Cooperative
• **Dan Borneo**, Engineering Project/Program Lead, Sandia National Laboratory
• **Todd Olinsky-Paul**, Project Director, Clean Energy States Alliance
• **Val Stori**, Project Director, Clean Energy States Alliance (moderator)
This webinar was presented by the DOE-OE Energy Storage Technology Advancement Partnership (ESTAP)

Dr. Imre Gyuk
US DOE-OE
imre.gyuk@hq.doe.gov

Dan Borneo
Sandia National Laboratory
drborne@sandia.gov

Todd Olinsky-Paul
Clean Energy States Alliance
todd@cleanegroup.org

Val Stori
Clean Energy States Alliance
val@cleanegroup.org

ESTAP Website: https://cesa.org/projects/energy-storage-technology-advancement-partnership/

ESTAP Webinar Archive: https://www.cesa.org/projects/energy-storage-technology-advancement-partnership/webinars/
Upcoming Webinars

100% Clean Energy States and the 100% Clean Energy Collaborative
Monday, May 11, 3-4pm ET

Decarbonizing Electricity: The Critical Role of Firm Low-Carbon Resources
Friday, May 15, 2-3pm ET

Solar for All: The District of Columbia’s Innovative Strategy for Low-to Moderate-Income Solar
Wednesday, May 27, 2-3pm ET

Replacing New York City’s Dirty Peaker Power Plants with Renewables and Battery Storage
Thursday, May 28, 1-2:30pm ET

Read more and register at: www.cesa.org/webinars
Grid Scale Energy Storage, for Resilience, Stability, and a Greener Grid

IMRE GYUK, DIRECTOR, ENERGY STORAGE RESEARCH, DOE-OE
Sterling, MA: Microgrid/Storage Project

DOE-OE Collaboration with Sterling Municipal Light Department.

Ribbon Cutting: October 2016
Commissioning: December 2016
Reducing Monthly and Yearly Peaks:

April 2019: 1 million Avoided Cost!

Visitors: Germany, Switzerland, Denmark, Sweden, England, Ireland, Australia, Japan, Malaysia, Taiwan, Brazil, Chile, Thailand
Cordova, Alaska – Pop. 2,239
Copper River Salmon
World’s Finest Salmon!
Cordova Electric Cooperative Collaboration with DOE-OE

Total Generating Capacity:
6MW + 1.25MW Hydro; 2x 1MW Diesel
0.5MW Deflected as Spinning Reserve
Hydro: $0.06/kW; Diesel: $0.60/kW

Clay Koplin, CEO
1 MW / 1 hr Li-ion Storage by SAFT

On ancient Eyak Land

Commissioned June 7, 2019

- Frequency Regulation – Replace Diesel
- Load following – Make Hydro Dispatchable
- Emergency Supply – Resilience
- Diesel Arbitrage, Preheating dormant Diesels
National Scope - Local Relevance!

• ABQ Public Schools: demonstrate economic & resilience benefits of ES available to public schools. 13 high schools, 140 campuses.

• Project with Picuris Pueblo, NM to install storage in combination with solar for “Energy Independence”.

• Iowa: Develop 6-8 hour backup for existing/planned renewables

• 3 projects involving Rural Co-ops and Military Reservations.

• Levelock Village, AK. Tech assistance for ES microgrid

• Puerto Rico: 5 town consortium to form Central Mountain micro-grid powered by 250MW solar and hydro with 75 MW storage backup
Energy Storage should be in the Toolbox of every Utility!
BESS Application in a Microgrid - Cordova Electric Cooperative

Energy Storage Technology Advancement Partnership (ESTAP)
DOE-OE-ES / Sandia / CESA / CEC Webinar
May 07, 2020
Cordova Electrical Grid

Humpback Creek Hydroelectric Plant
1250kW (2 x 500 kW + 1 x 250 kW)
17,000 foot UG and submarine transmission line

Power Creek Hydroelectric
6278kW (2 x 3124 kW)
25 kV transmission ties to Eyak Substation, Inflatable dam

City of Cordova
1,566 customers, 18MW
One Substation
78mi UG distribution lines

Battery Energy Storage System
1 MW, 1MWh
ABB/SAFT at Eyak Substation

Orca Power Plant
10.8 MW Diesel
Control Center, CEC
CEC Controls System Frequency by Deflecting up to 750kW of water, a waste of energy (orange), and there is excess in summer (green), and not enough in winter (black/diesel).
CEC Use Case for BESS Storage: A Bridge Across the Valley of Death; Hydro vs. Diesel Generation

Power Creek Run of River Hydro Intake
A US Department of Energy Sponsored Microgrid Battery Energy Storage Application

(Dr. Imre Gyuk, Director of Energy Storage Research, Office of Electricity)

PARTNERS: US DEPT OF ENERGY-SANDIA-NRECA-ACEP-CEC-CESA; SAFT/ABB PACKAGE

Office of ELECTRICITY
Battery Energy Storage – Vendor Choice

SAFT-ABB PACKAGE
RIBBON CUTTING
June 7, 2019
TIMELINES

- 2007 – CEC System Loads Exceed Hydro Capacity and diesel peaking creates a “valley of death”
- 2012 – CEC partners with ACEP and recognizes the benefits of energy storage to CEC Grid
- 2015-16 ACEP Approaches Dr. Gyuk with CEC use case/opportunity and rich CEC data set
- 2016 Dr. Gyuk initiates phase 1 modelling of CEC energy storage via Sandia Laboratories
- 2017 Modelling and analysis indicates a right-sized, right-located Lithium Ion solution for CEC
- 2018 Dr. Gyuk sponsors phase 2 specification and procurement of BESS
- October 2018 CEC BESS Ordered
- May 2019 BESS arrives on site
- June 2019 BESS Installed
- July 2019 BESS Operational
- November 2019 Fully integrated and automated, saves $10,000 over 2-day Thanksgiving Holiday
- November CEC achieves 94% hydro crushing all previous records
- December 2019 CEC achieves 86% hydro crushing all previous records
- April 2020 CEC goes 100% hydro 3 weeks early and starts automated electric boiler heating
- Today: CEC is 100% hydro and heating diesel generators with excess hydro due to BESS
CEC BESS – Preliminary Valuation

- Precise quantitative measures are complex
- CEC Preliminary analysis indicates that at $3.00/gallon, fuel is only half the savings – diesel runtime variable costs are significant
- CEC automated measurement of “valley of death” hours where the BESS balances the grid to keep diesels off
- Year to date “valley of death” is 105 hours for 2020
- CEC estimates a cost savings of $500/hour or $52,500 YTD 2020
- This does not include boiler fuel or other savings
- We just started full battery operations 2 weeks ago

Battery kWh Metering

<table>
<thead>
<tr>
<th></th>
<th>Current Values</th>
<th>End of Hour</th>
<th>End of Day</th>
<th>End of Month</th>
<th>End of Year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acc Value</td>
<td>Hr to Date</td>
<td>Day to Date</td>
<td>Month to Date</td>
<td>Year to Date</td>
</tr>
<tr>
<td>Out</td>
<td>765</td>
<td>0</td>
<td>415</td>
<td>3491</td>
<td>0</td>
</tr>
<tr>
<td>In</td>
<td>3591</td>
<td>7</td>
<td>70</td>
<td>2308</td>
<td>11415</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>63</td>
<td>2301</td>
<td>11719</td>
</tr>
<tr>
<td>Eff</td>
<td>0.00</td>
<td>0.00</td>
<td>17.98</td>
<td>28.86</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Battery Savings

<table>
<thead>
<tr>
<th></th>
<th>Current Values</th>
<th>End of Day</th>
<th>End of Month</th>
<th>End of Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery</td>
<td>1052015</td>
<td>0</td>
<td>2010</td>
<td>0</td>
</tr>
</tbody>
</table>
Preliminary CEC BESS Financials
Early Takeaways

- “Likely” scenario was 35,000 gallons fuel savings, trending toward 70,000
- “Likely” Battery life was 15 years – the CEC use case gets the highest value from grid balancing which requires little capacity – trending toward 30-year life
- Diesel non-fuel variable costs are significant: lube oil, rebuild hours, regular and emergency maintenance on a per-hour basis are very high from CEC historical records, whereas hydro maintenance and run time hours are an order of magnitude lower
- Data capture and analysis have been delayed by technical and logistical (COVID-19) challenges – a pending site visit will complete this task as travel restrictions ease, paving the way for Sandia to quantify economic and operational measures
- PNNL is working with Alaska Center for Energy and Power and CEC to continue to optimize economic value streams as emergency hospital generation, etc.
Funding and Technical Partners

DOE OE - ES

<table>
<thead>
<tr>
<th>Partner</th>
<th>Funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEC</td>
<td>$1,025,000</td>
</tr>
<tr>
<td>SANDIA (Not Including Modeling)</td>
<td>$500,000</td>
</tr>
<tr>
<td>PNNL</td>
<td>$325,000</td>
</tr>
<tr>
<td>Total Project Funding</td>
<td>$1,850,000</td>
</tr>
</tbody>
</table>

- **Project Champion:** Imre Gyuk, DOE/OE/Energy Storage
- **Technical Partners:** Department of Energy, Sandia Labs, PNNL, CEC, Alaska Center for Energy and Power, NRECA, SAFT, ABB, Electric Power Systems and now CESA advocacy/technical transfer
Here is What We Learned About BESS...

• Calendar aging capacity loss of 1.5% per year, our chemistry is estimated at 0.5%
• Capacity loss is kWh; kW remains near constant, round trip DC efficiency drops slightly
• Deep cycling causes rapid loss of life, shallow cycling extends life and total kWh throughput by a factor of 100; from 5GWh to 500GWh (or more) in our case.
• Frequency controls (small charges/discharges) can occur while bulk charging/discharging
• Removal, recycling, replacing a full battery set can cost 60% of initial package cost.
• Delivery times are fairly short, < 12 mo. From award to receipt
• Factory warranties and required annual maintenance are expensive
• Control algorithms are complex!
• Integration into a microgrid is costly and complex
• Improvements can be expected through careful monitoring and iterative optimizations
• CEC is Smashing Previous Hydro Records – 95% Hydro in November, 84% in December
Questions?