Northeast Wind Resource Center Webinar

U.S. Job Creation in Offshore Wind

Hosted by
Val Stori, Clean Energy Group
December 7, 2017
Housekeeping

Use the red arrow to open and close your control panel.

Join audio:
• Choose Mic & Speakers to use VoIP
• Choose Telephone and dial using the information provided

Submit questions and comments via the Questions panel.

This webinar is being recorded. We will email you a webinar recording within 48 hours. NWRC webinars are archived online at www.cleanegroup.org/webinars
The Northeast Wind Resource Center (NWRC) is the regional epicenter for salient, unbiased information on land-based and offshore wind energy in the Northeastern United States. Published research, studies, and analyses associated with the issues impacting public acceptance of wind deployment are available in the NWRC Resource Library.

The NWRC is supported in part by a grant from the U.S. Department of Energy's WINDEXchange program, and is managed by Clean Energy Group, with participation from Sustainable Energy Advantage and the Maine Ocean & Wind Industry Initiative.

www.northeastwindcenter.org
About WINDEExchange

WINDEExchange is the U.S. Department of Energy (DOE) Wind Program's platform for disseminating credible information about wind energy. The purpose of WINDEExchange is to help communities weigh the benefits and costs of wind energy, understand the deployment process, and make wind development decisions supported by the best available information.

On March 11, 2014, the U.S. Department of Energy (DOE) announced six Wind Energy Regional Resource Centers that were selected through a competitive process administered by the National Renewable Energy Laboratory (NREL).
A Roadmap for Multi-State Cooperation on Offshore Wind

Three reports:

- Northeast Offshore Wind Regional Market Characterization
- U.S. Job Creation in Offshore Wind
- U.S. Jones Act Compliant Offshore Wind Turbine Installation Vessel Study

www.northeastwindcenter.org/offshore-wind/multi-state/#reports
Panelists

• **Alun Roberts**, Associate Director, BVG Associates

• **Val Stori**, Project Director, Clean Energy Group/ Clean Energy States Alliance (moderator)
U.S. Job Creation in Offshore Wind
A Report for the Roadmap Project for Multi-State Cooperation on Offshore Wind

Alun Roberts, BVG Associates

Massachusetts Clean Energy Center
Massachusetts Department of Energy Resources
New York State Energy Research and Development Authority
Rhode Island Office of Energy Resources
Clean Energy States Alliance
Agenda

1. Background and methodology
2. Quantitatively analysis of US offshore wind jobs
3. Occupation analysis of offshore wind jobs
4. Conclusions

Dr Alun Roberts,
Associate Director, BVG Associates
aer@bvassociates.com
+44 1793 799022

MHI Vestas V164-8.0MW turbines being installed at the Burbo Bank Extension
Our clients choose us when they want to do new things, think in new ways and solve tough problems

- **Economics**
 - LCOE/NPV Modelling
 - Supply chain analysis
 - Economic impact

- **Business**
 - Market assessment
 - Business strategies
 - Industry enablement

- **Technology**
 - Due diligence
 - Asset management
 - Technology support

- Competitor landscape / Voice of customer / Industry introductions / Value proposition development / communications strategy / M&A / Tendering support

- Founded in 2006
- Over 270 Clients
- 170 years staff experience
- 40 landmark publications

Onshore wind Offshore wind Wave and tidal Energy Systems

Slides indicated pre-read provide relevant, detailed information but will not be covered in detail during the presentation.
Total offshore wind costs

- Project development and management: 2.9%
- Nacelle, rotor and assembly: 10.7%
- Blades: 5.0%
- Tower: 1.7%
- Foundation supply: 7.7%
- Array cable supply: 2.2%
- Export cable supply: 5.3%
- Onshore and offshore substation supply: 7.0%
- Turbine installation: 3.2%
- Foundation installation: 4.5%
- Array cable installation: 4.0%
- Export cable installation: 3.0%
- Other installation: 1.3%
- Subsea cable maintenance and service: 1.7%
- Substation maintenance and service: 0.8%
- Turbine maintenance and service: 23.3%
- Wind farm operation: 14.8%
- Foundation maintenance and service: 0.8%
- Turbine maintenance and service: 23.3%
- Foundation maintenance and service: 0.8%
- Subsea cable maintenance and service: 1.7%
- Substation maintenance and service: 0.8%
The aim of the analysis was to understand how much of the expenditure on an offshore wind farm is spent on wages.

Wind farm costs were based on analysis we undertook with NYSERDA.

There is no established supply chain in the US, and so we used figures based on our understanding of profit and asset depreciation on our experience in Europe.

Having done this, we researched typical salaries and labor costs in states where we expected offshore wind.

The methodology differs from conventional approaches that typically use North American Industry Classification System (NAICS) codes. This is the standard used by Federal statistical agencies in classifying business establishments for the purpose of collecting, analyzing, and publishing statistical data related to the U.S. business economy. These codes do not map easily onto the offshore wind sector.
We agreed a high and low scenarios with the project steering group of 8MW and 4MW built by 2030 along the US east coast.

These scenarios included Block Island in 2016 and South Fork in 2021 but otherwise were not based on individual projects.

The key feature was that from 2024 onwards, the annual rate of installation remained the same.
Total job creation

<table>
<thead>
<tr>
<th>Element of the supply chain</th>
<th>8GW</th>
<th>4GW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project development and management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbine supply</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nacelle, rotor and assembly</td>
<td>49,580</td>
<td>24,700</td>
</tr>
<tr>
<td>Blades</td>
<td>18,170</td>
<td>9,000</td>
</tr>
<tr>
<td>Tower</td>
<td>6,140</td>
<td>3,000</td>
</tr>
<tr>
<td>Balance of plant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foundation</td>
<td>36,860</td>
<td>18,400</td>
</tr>
<tr>
<td>Array cables</td>
<td>10,110</td>
<td>5,000</td>
</tr>
<tr>
<td>Export cable</td>
<td>26,440</td>
<td>13,200</td>
</tr>
<tr>
<td>Substation supply and operational infrastructure</td>
<td>37,980</td>
<td>18,900</td>
</tr>
<tr>
<td>Installation and commissioning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbine</td>
<td>9,790</td>
<td>4,900</td>
</tr>
<tr>
<td>Foundation</td>
<td>19,980</td>
<td>10,000</td>
</tr>
<tr>
<td>Subsea cable</td>
<td>32,060</td>
<td>16,000</td>
</tr>
<tr>
<td>Other installation</td>
<td>7,330</td>
<td>3,700</td>
</tr>
<tr>
<td>Operation, maintenance and service</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wind farm operation</td>
<td>64,290</td>
<td>32,000</td>
</tr>
<tr>
<td>Turbine maintenance and service</td>
<td>149,050</td>
<td>74,200</td>
</tr>
<tr>
<td>Foundation maintenance and service</td>
<td>4,890</td>
<td>2,400</td>
</tr>
<tr>
<td>Subsea cable maintenance and service</td>
<td>8,540</td>
<td>4,300</td>
</tr>
<tr>
<td>Substation maintenance and service</td>
<td>3,850</td>
<td>1,900</td>
</tr>
<tr>
<td>Total</td>
<td>499,070</td>
<td>248,580</td>
</tr>
</tbody>
</table>
High market scenario

- Annual FTEs peak at about 35,000.
- There is a gradual increase in the proportion of operational jobs.
- There is a gradual decrease in capital phase jobs 2024-2028 because industry learning means lowers costs and fewer jobs.
- The number of jobs starts to fall away in 2029 because no new capacity after 2030 is modelled.

Low market scenario

- Annual FTEs peak at about 18,000.
- There is less of a decrease due because a smaller market achieves cost reduction more slowly.

*One full-time equivalent (FTE) year is the equivalent of one person employed full time for a year. It could be, for example, two people employed full time for 6 months or two people employed 50% of the time for a year.
Baseline jobs are those where there are no compelling reasons why the work would not be undertaken in the US. These baseline jobs are not necessarily undertaken by US nationals.

Additional jobs may be created in the US by investments in new manufacturing and service facilities. These additional jobs were categorized as high, medium or low probability for each scenario.

The probability was based on:

- Additional supply chain capacity: the US market may create new demand that cannot be met from existing factories
- Benefits of local supply: imported components or services from outside the US may have significantly higher costs or risks
- Local expertise: US companies may have world-class capability that is unlocked by the creation of a local market
- Market structure: conditions imposed on developers, such as lead times for delivery or local content, may support or hinder investment in local capacity
US offshore wind jobs: turbine

<table>
<thead>
<tr>
<th>Nacelles</th>
<th>High</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>• There will be sufficient capacity in European factories to the mid-2020s.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• For nacelles, assembly is ideally close to the wind farm but it is more important for the manufacturer to remain close to its major suppliers.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• There is experience in nacelle and hub component manufacture and assembly in the US from the onshore wind sector, but concentrated in other regions away from the northeast coast.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In the high market scenario, there is a medium probability that the US will secure nacelle and hub components and assembly. In the low market scenario, there is a low probability.

<table>
<thead>
<tr>
<th>Blades</th>
<th>High</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>• There will be sufficient capacity in European factories to the mid-2020s.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Transport and handling of blades is costly and there are few supply chain interfaces. There is therefore a strong benefit of local supply.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• The US has established blade manufacturing skills although this is concentrated in other regions away from the northeast coast.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In the high market scenario, an investment in a US blade manufacturing facility is a high probability. In the low market scenario, there is a medium probability.

<table>
<thead>
<tr>
<th>Towers</th>
<th>High</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>• There will be sufficient capacity in European factories to the mid-2020s.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Transport and handling of towers is costly and there are few supply chain interfaces. There is therefore a strong benefit of local supply.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• The US has tower capability but not in locations suitable for offshore wind.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Towers are manufactured by third parties and low profit margins are a barrier to investment.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In the high market scenario, an investment in a US blade manufacturing facility is a high probability. In the low market scenario, there is a medium probability.
US offshore wind jobs: balance of plant

<table>
<thead>
<tr>
<th>Foundations</th>
<th>High</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>• There will be sufficient capacity in European factories to the mid-2020s.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Transport of foundations is costly, there are few supply chain interfaces and supply chain risk is mitigated by local supply.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Offshore wind profit margins are narrow and demand is likely to be ‘lumpy’. Efficient manufacture requires significant investment.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• For jackets, high volumes and complex fabrication have meant that several European suppliers have faced financial difficulties.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Foundation and substation supply provides a high probability for additional US jobs in both market scenarios.

<table>
<thead>
<tr>
<th>Array cables</th>
<th>High</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>• There will be sufficient capacity in Europe and Asia factories to the mid-2020s.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Although cable transport and storage is costly, the offshore wind industry has not stimulated significant investment in factories in new markets, mainly because of the high CAPEX and long lead times.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Array cables are supplied from factories that also meet demand for oil and gas power cables and umbilicals.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In the high market scenario, an investment in a US array cable facility is a high probability. In the low market scenario, there is a medium probability.

<table>
<thead>
<tr>
<th>Export cables</th>
<th>High</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Capacity has long been an area of concern for offshore wind developers and the growth of the US market in both scenarios will create additional strain on supply.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• There are benefits of local supply but manufacturers have been cautious about building new factories. Most existing factories were built for high capacity interconnectors and there are none in the US.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In the high market scenario, an investment in a US export cable facility is a medium probability. In the low market scenario, there is a low probability.
Offshore wind occupations

Foundations install
- There is limited availability of heavy lift vessels with capacity greater than 1,200t.
- Current Jones-Act compliant vessels are unlikely to be suitable but solutions using US-flagged feeder vessels are viable.
- A CESA-commissioned study showed that a 4GW pipeline could provide a business case for a US-flagged wind farm installation vessel. It would be impractical for a single vessel to support all US offshore wind farm installation.

In the high market scenario, US foundation installation installation is a medium probability. In the low market scenario, there is a low probability.

Subsea cable install
- Jones Act not likely to be applied to cable vessels.
- European vessels could be used, although mobilisation costs may make them uncompetitive.
- There are US-flagged vessels that could be used for offshore wind cable-laying, although these are likely to be suboptimal because of the specific requirements of offshore wind.

Subsea cable installation jobs have been judged as baseline because there is US capability and no compelling reason to use European contractors.

Turbine installation
- There is limited availability of jack-up vessels with the capability of installing turbines >8MW at 110m.
- Current Jones-Act compliant vessels will not be suitable and feeder solutions are expensive and unproven.
- For early US wind farms at least, creative solutions are likely to be needed.

In the high market scenario, US turbine installation installation is a medium probability. In the low market scenario, there is a low probability.
Offshore wind occupations

- Covers asset management and procurement, and the provision of quayside infrastructure and equipment (including vessels).
- Most administrative functions are provided by a dedicated operating company with some services provided by one of its owners. Most of this work is undertaken locally at the operations base.
- Overseas developers may initially provide some of these services, such as engineering and asset management, from their European teams.

Wind farm operation has been judged as baseline because most functions will need to be in the US, even if they are not local to the wind farm.

Turbine manufacturers typically negotiate a five-year service agreement with the wind farm owner.

Most of the jobs are created locally for day-to-day service tasks. Additional labor will be brought in for regular turbine maintenance work but, in a mature US offshore wind industry, this will be done by US technicians.

Turbine maintenance and service has been judged as baseline because most functions will need to be in the US, even if they are not local to the wind farm. Major components will need to be imported if original supply is not US.

- Covers inspection, maintenance and repair to foundations, cables and substations.
- Cable repair is a key area with cables the largest cause of insurance claims in the sector.
- This work is intermittent and very local suppliers are unnecessary. Nevertheless, US suppliers are likely for many aspects of the work.
- In some specialist areas, European suppliers are likely to seek US work and those that are successful are likely to build up US operations.

Other maintenance and service has been judged as baseline.
There is a medium probability that the US can deliver all parts of the offshore wind supply chain.

A US market of about 1GW is probably smaller than suppliers would like (they would like 1GW for themselves) but the costs of importing from Europe should create a business case for US investment.

The proportion of baseline jobs increases as operations activity increases and capital phase work decreases in 2029 and 2030.

For most of the decade, a third of the supply chain jobs are low probability.

A US market of 400-500MW a year is insufficient to support a business case for significant new offshore wind investment. It may only be 30 turbines a year, perhaps 10% of European factory output.
Offshore wind occupations

Method

- Department of Labor’s Standard Occupational Classification (SOC) system
- Breakdown (%) of roles developed through interviews with established European suppliers.
- The only reasons for differences in the US may be levels of productivity or automation, which are unlikely to be significant.
Occupations analysis

Total jobs

- Installation, Maintenance, and Repair Occupations: 39%
- Management Occupations: 17%
- Production Occupations: 17%
- Architecture and Engineering Occupations: 8%
- Transportation and Material Moving Occupations: 6%
- Business and Financial Operations Occupations: 5%
- Office and Administrative Support Occupations: 4%
- Computer and Mathematical Occupations: 1%
- Sales and Related Occupations: 1%
- Arts, Design, Entertainment, Sports, and Media Occupations: 1%
- Construction and Extraction Occupations: 0.5%
- Other: 1%

Baseline jobs

- Installation, Maintenance, and Repair Occupations: 37%
- Management Occupations: 17%
- Production Occupations: 17%
- Architecture and Engineering Occupations: 8%
- Transportation and Material Moving Occupations: 6%
- Business and Financial Operations Occupations: 5%
- Office and Administrative Support Occupations: 4%
- Computer and Mathematical Occupations: 1%
- Sales and Related Occupations: 1%
- Arts, Design, Entertainment, Sports, and Media Occupations: 1%
- Construction and Extraction Occupations: 0.5%
- Other: 1%

Results at ‘major group’ category

- Major group category is the top level category.
- Unsurprisingly, there is a high proportion of workers engaged in installation and maintenance, production and management.
- There are also small but significant numbers of those in general back office occupations, in IT, human resources, sales and marketing, and finance.
Conclusions

- The US offshore wind sector will create a significant number of jobs. If the US reaches 8GW by 2030, it should be able to create jobs across all parts of the supply chain.

- In a smaller market, in which the US reaches 4GW by 2030, the case for new offshore wind investments is weak but there are still significant ‘baseline’ jobs, mainly in development and operations. More jobs could be created if local content is demanded but this will limit the US’s ability to benefit from European cost reductions.

- The offshore wind sector will support a diverse range of jobs. The key occupations are at technician level, in manufacturing, installation and maintenance. There is a demand for these skills across a range of industrial sectors and offshore wind increases the case for investment to create these skills.

- Suppliers will undertake product-specific training but they will look to public training providers to develop core skills.

- As for all sectors, offshore wind will support employment in back-office functions such as IT, marketing and sales, and finance and in generic business services. These jobs are not ‘visible’ but they represent a real effect of offshore wind.
Thank you

BVG Associates Ltd
The Blackthorn Centre
Purton Road
Cricklade, Swindon
SN6 6HY UK
tel +44 (0) 1793 752 308
info@bvgassociates.com
@bvgassociates
www.bvgassociates.com

BVG Associates Ltd
Inovo
121 George Street
Glasgow
G1 1 RD UK
tel +44 (0) 44 212 0800

BVG Associates LLC
874 Walker Road
Suite C
Dover
Delaware
19904 USA
tel +1 (313) 462 0673

This presentation and its content is copyright of BVG Associates Limited - © BVG Associates 2017. All rights are reserved.
Any redistribution or reproduction of part or all of the contents of this presentation in any form is prohibited other than the following:
• You may print or download to a local hard disk extracts for your personal and non-commercial use only.
• You may copy the content to individual third parties for their personal use, but only if you acknowledge BVG Associates as the source of the material.

You may not, except with our express written permission, distribute or commercially exploit the content.

Andy Geissbuehler
amg@bvgassociates.com
+1 804 405 5156
Thank you for attending our webinar

Val Stori
Clean Energy Group/
Northeast Wind Resource Center
val@cleanegroup.org

Northeast Wind Resource Center: www.northeastwindcenter.org

DOE Wind Exchange: http://energy.gov/eere/wind/windexchange