

Northeast Wind Resource Center Webinar

The Case for Building a U.S. Offshore Wind Vessel + Other Opportunities for the U.S. O&G Sector in Offshore Wind

Hosted by Val Stori, Clean Energy Group June 6, 2017

Housekeeping

Use the red arrow to open and close your control panel

Join audio:

- Choose Mic & Speakers to use VoIP
- Choose Telephone and dial using the information provided

Submit questions and comments via the Questions panel

This webinar is being recorded. We will email you a webinar recording within 48 hours. NWRC webinars are archived online at www.cleanegroup.org/webinars

The Northeast Wind Resource Center

The Northeast Wind Resource Center (NWRC) is the regional epicenter for salient, unbiased information on land-based and offshore wind energy in the Northeastern United States. Published research, studies, and analyses associated with the issues impacting public acceptance of wind deployment are available in the NWRC Resource Library.

The NWRC is supported in part by a grant from the U.S. Department of Energy's WINDExchange program, and is managed by Clean Energy Group, with participation from Sustainable Energy Advantage and the Maine Ocean & Wind Industry Initiative.

www.northeastwindcenter.org

About WINDExchange

WINDExchange is the U.S. Department of Energy (DOE) Wind Program's platform for disseminating credible information about wind energy. The purpose of WINDExchange is to help communities weigh the benefits and costs of wind energy, understand the deployment process, and make wind development decisions supported by the best available information.

On March 11, 2014, the U.S. Department of Energy (DOE) announced six Wind Energy Regional Resource Centers that were selected through a competitive process administered by the National Renewable Energy Laboratory (NREL).

Panelists

- Jennifer Runyon, Chief Editor, Renewable Energy World
- Brian Cheater, Technical Director Naval Architecture, GustoMSC US, Inc.
- Val Stori, Project Director, Clean Energy Group

Renewable Energy World is the authoritative source for information on markets, policy and finance covering all renewable technologies – solar, wind, energy storage, geothermal, bioenergy, ocean, river, tidal and hydropower. With 700,000 average monthly page views and more than 300,000 unique visitors. Our digital magazine boast more than 52,000 subscribers; more than 200,000 registered e-newsletter subscribers and a global readership in 174 countries.

Jennifer Runyon
Background: Writing/editing/teaching (Began career as an English teacher). Switched to editing in 2000
Managing editor at Renewable Energy World, 2007
Conference chair, Renewable Energy World International, 2011
Chief Editor, 2012

In sum: have been covering renewable energy generation since 2007 and have witnessed its growth.

Diversification Avenues for Oil and Gas to support Offshore Wind

1. Project Management

2. Cables

JDR CHOSEN BY US WIND INC. AS CABLE PARTNER

February 20th, 2017: JDR, a leading supplier of subsea power cables and umbilicals to the global offshore energy industry, has been selected by US Wind Inc., as the preferred cable partner for its first offshore wind project.

3. Substations

An Offshore Substation

4. Foundations

More on foundation types

5. Secondary Steelwork

6. Installation equipment, Installation support service and Maintenance and Inspection services

SAVE \$50 off our early-bird registration rate with promo code VESSEL

TWO MARKETS | TWO DAYS

REGISTER TODAY! OFFSHOREWINDSUMMIT.COM

Owned & Produced By:

Presented By:

Offshore

#0WES17

NYSERDA WIND FARM INSTALLATION VESSEL

6 JUNE ,2017

- COMPANY BACKGROUND
- TRACK RECORD
- VESSEL STUDY
- THE PHYSICAL ENVIRONMENT
- ASSUMED WIND FARM
- TRANSPORTATION AND INSTALLATION
- OUR SOLUTION
- FINANCES

COMPANY BACKGROUND

HISTORY OVER 150 YEARS EXPERIENCE

1862

Start of Gusto Shipyard (The Netherlands)

1977

Start of Marine Structure Consultants B.V. (Sliedrecht)

1978

Start of Gusto Engineering (Schiedam)

1988

IHC Caland completes the repurchase of all Gusto Engineering and MSC shares

2003

Start of GustoMSC alliance

2011

Start of GustoMSC B.V.

2012

GustoMSC acquired by Parcom Capital, management & staff (as of November 2012)

0000

0000

0000

00000000

0000

Headquarters in Schiedam, GustoMSC employs over 140 highly skilled and talented staff.

NOVEMBER 2012 PARCOM CAPITAL AND THE GUSTOMSC MANAGEMENT ACQUIRED GUSTOMSC. AS AN INDEPENDENT DESIGN OFFICE WE CONTINUE TO WORK WITH OUR CLIENTS AND OTHER BUSINESS PARTNERS.

....

000

000

parcom | capita

WHAT WE DO

- GustoMSC understands how to protect reputations against risks
- Collaboration with Energy Companies / Developers, High-End Contractors, Universities, Shipyards, Government Organizations
- Safety and Efficiency are key words

GUSTOMSC DESIGN SERIES

VESSELS HEAVY LIFT VESSEL "OLEG STRASHNOV" WITH 5,000 TON OFFSHORE CRANE

Design
Engineering & consultancy
Equipment design & supply
After sales services

TRI-FLOATER SEMI-SUBMERSIBLE FLOATING WIND TURBINE FOUNDATION

Design
Engineering & consultancy
Equipment design & supply
After sales services

GustoMSC ENGINEERING CONSULTANCY AND OTHER SERVICES

UPGRADES AND MODIFICATIONS:

- LEG EXTENSIONS
- MOORING UPGRADES
- HULLFORM MODIFICATION SIZING, MOTIONS AND STABILITY
- STRUCTURAL MODIFICATIONS

CONSULTANCY:

- DEADWEIGHT SURVEYS AND INCLINES
- FEASIBILITY STUDIES
- HYDRODYNAMICS AND MODEL TESTING
- CFD STUDIES

• EQUIPMENT:

- CRANES DESIGNS AND UPGRADES
- JACKING SYSTEMS
- FIXATION SYSTEMS
- XY CANTILEVER SKIDDING SYSTEM

JACKING EQUIPMENT

HYDRAULIC CYLINDRICAL LEGS

CONTINUOUS HYDRAULIC CYLINDRICAL LEGS

RACK AND PINION TRUSS LEGS

OFFSHORE CRANES ASSOCIATED EQUIPMENT

Heavy Lift Crane

 Heavy lift, fully revolving offshore derrick cranes. Ideally suited for construction work in the oil and gas sector and for installation of foundations for wind turbines. It can be mounted on either a ship or a semisubmersible.

Column Crane

 A range of cranes that can be positioned on a pedestal onboard any type of vessel.

"Around the Leg" Crane

 Situated around the leg of a jack-up unit and supported on the jack-house. Enhances operations and increases net deck area, used typically for wind turbine installation.

SPECIALTY CRANES

Main features – leg cranes:

- Bogie wheel system i.s.o. classic slewing bearing
- Electric driven
- Fully (unrestricted) revolving with slip ring for electrical power and instrumentation

Bogie wheel system (typical)

TRACK RECORD

OPERATIONAL TRACK RECORD

MARKET SHARE OF TURBINE AND FOUNDATION INSTALLATION FROM 2010 TO 2016

Number of installed Turbines

- By GustoMSC Jack-ups
- Total installed

2,024 pcs. (77 %) 2,614 pcs.

Number of installed foundations

- By GustoMSC designs
- Total installed

1,274 pcs. (64 %) 2,000 pcs.

Proven by experience

REFERENCES IN OFFSHORE WIND

No.	Name	Series	Owner	Year
1	WIND	NG-600	DDB/Ziton	1995
2	Buzzard	SEA-1250	GeoSea	1982
3	Vagant	SEA-800	GeoSea	2002
4	Pauline	SEA-900	Besix	2002
5	Wind Lift 1	NG-5300	Bard	2009
6	Goliath	SEA-2000	GeoSea	2009
7	Sea Worker	SEA-2000	A2SEA	2009
8	Seafox 7	SEA-2000	Workfox	2009
9	JB-114	SEA-2000	Jack-Up Barge BV	2010
10	JB-115	SEA-2000	Jack-Up Barge BV	2010
11	Seajacks Kraken	NG-2500X	Seajacks UK Ltd	2009
12	Seajacks Leviathan	NG-2500X	Seajacks UK Ltd	2009
13	GMS Endeavour	NG-2500X	GMS	2010
14	GMS Endurance	NG-2500X	GMS	2010
15	MPI Adventure	NG-7500/6	MPI Offshore	2011
16	MPI Discovery	NG-7500/6	MPI Offshore	2011
17	JB-117	SEA-3250	Jack-Up Barge	2011
18	Neptune	SEA-2500	GeoSea	2011
19	RIMA (Ex-Kuroshio)	SEA-900	Besix	2011

No.	Name	Series	Owner	Year
20	Seajacks Zaratan	NG-5500C	Seajacks Ltd	2012
21	Brave Tern	NG-9000C	Fred Olsen Windcarrier	2012
22	Bold Tern	NG-9000C	Fred Olsen Windcarrier	2012
23	Sea Installer	NG-9000C	A2SEA	2012
24	JB-118	SEA-3250	Jack-Up Barge	2013
25	Sea Challenger	NG-9000C	A2SEA	2014
26	Seajacks Scylla	NG-14000X	Seajacks UK Ltd	2015
27	GMS Shamal	NG-1800X	Gulf Marine Services	2015
28	GMS Scirocco	NG-1800X	Gulf Marine Services	2015
29	GMS Sharqi	NG-1800X	Gulf Marine Services	2016
30	Apollo	NG-5500X	GeoSea NV	2017
31	GMS Evolution	NG-2500X	Gulf Marine Services	2016
32	TYM Matsu	NG-2500X	Thong Yong Maritime	2017
33	TYM Baymax	NG-1800X	Thong Yong Maritime	2017
34	TYM Nemo	NG-1800X	Thong Yong Maritime	2018
35	Penta-Ocean	NG-3750C	Penta-Ocean Constr.	2018

GustoMSC. - Proprietary and confidential information. Subjected to

SEA-SERIES

SEA-3250 "JB-117" NON-PROPELLED JACK-UP WITH 800T PEDESTAL CRANE

Other SEA-series

- SEA-600
- SEA-900
- SEA-1250
- SEA-1600
- SEA-1800X
- SEA-2000
- SEA-2500X
- SEA-2750
- SEA-3750C
- SEA-5500C
- SEA-5500X

Design

Engineering & consultancy Equipment design & supply After sales services

NG-SERIES

NG-9000C "BRAVE TERN" SELF-PROPELLED JACK-UP WITH 800T LEG CRANE

Other NG-series

- NG-1250
- NG-1800X
- NG-2000
- NG-2500X
- NG-2750C
- NG-3500X
- NG-3750C
- NG-5500C
- NG-5500X
- NG-9800C
- NG-10000X
- NG-14000X
- NG-14000XL

Design

Engineering & consultancy
Equipment design & supply
After sales services

DESIGN EVOLUTION 1

Shallow water range

Characteristics:

- Towed or self propelled and DP
- Crane capacity between 300 800 ton
- Load capacity between 1,000 2,200 ton
- Water depth range up to 35 40 m

DESIGN EVOLUTION 2

Medium water range

Characteristics:

- Self propelled and DP
- Crane capacity between 800 1,000 ton
- Load capacity between 2,500 6,500 ton
- Water depth range up to 45-55 m

Deep water range

Characteristics:

- Self propelled and DP
- Crane capacity between 1,200 2,500 ton
- Load capacity between 6,500 8,500 ton
- Water depth range up to 65 m

DESIGN EVOLUTION 3

GustoMSC. - Proprietary and confidential information. Subjected to

VESSEL STUDY

PROJECT INTRODUCTION

- NYSERDA ("New York State Energy Research and Development Authority")
- New York, Rhode Island, Massachusetts and Maine part of DOE funded project.
- Growing Realization that Commercial Wind Farm Development will need cross state cooperation.
- Road Map for Multi-State Cooperation on Offshore Wind Development.
 - A Strategy to Achieve a Regional Market of Scale
 - Project 3: US Vessel Study

PROJECT GOAL

- Create a Framework to understand what is required of a wind turbine installation vessel from technical and financial perspectives
 - Design a WTIV
 - Cost it
 - Define the business case required to support it

GustoMSC INTRODUCTION - PHYSICAL CUNIEXI

- Questions to frame-up technical requirements:
 - What do we need to install and where does it need to go?
 - How big is it and how do we need to lift and how do we hold it for installation?
 - What do the water depth and metocean conditions look like at the sites we need to work?
 - How far do we need to travel and what are the limitations on draft, beam and height?

- Questions to frame-up financial requirements:
 - What is the CAPEX of a Jones Act vessel?
 - What would the operating expenses (OPEX) be?
 - How many turbine installations might be required and how many years of work does this correspond to?
 - What kind of pipeline is required?
 - What combination of day-rates and pipeline generate acceptable returns on investment?

METHODOLOGY

- 1. Assume a hypothetical but realistic set of wind farm developments in the Region
- 2. Assume construction and installation methodologies
- 3. Develop functional requirements to satisfy those methodologies
- Develop the concept designs for a WTIV or feeder jack-up satisfying the technical requirements
- Submit the estimating packages to selected US shipyards to obtain build prices for Jones Act compliant vessels
- 6. Create a crewing model for a US flagged installation vessel
- 7. Create a vessel-specific financial model tracking capital (CAPEX) and operational (OPEX) expenses to generate Net Present Value (NPV), and Internal Rate of Return (IRR)

THE PHYSICAL ENVIRONMENT

DISTRIBUTION OF WATER DEPTH

- 81% of sites < 55m of water
- Average Water Depth 48.71m

	NUMBER OF WIND LEASE BLOCKS versus MAXIMUM WATER DEPTH (m)											
SAMPLE	15	20	25	30	35	40	45	50	55	60	65	Σ
1			3	4	8	12						27
2	2					7	22	24	44	21	11	131
3			1	2	3	6						12
							22	24	44			170

	PERCENTAGE DISTRIBUTION OF WATER DEPTH											
SAMPLE	15	20	25	30	35	40	45	50	55	60	65	Σ
1	0.0%	0.0%	1.8%	2.4%	4.7%	7.1%	0.0%	0.0%	0.0%	0.0%	0.0%	16%
2	1.2%	0.0%	0.0%	0.0%	0.0%	4.1%	12.9%	14.1%	25.9%	12.4%	6.5%	77%
3	0.0%	0.0%	0.6%	1.2%	1.8%	3.5%	0.0%	0.0%	0.0%	0.0%	0.0%	7%
Σ	1%	0%	2%	4%	6%	15%	13%	14%	26%	12%	6%	
CUMUL	1%	1%	4%	7%	14%	28%	41%	55%	81%	94%	100%	

DISTRIBUTION OF WATER DEPTH

<u>Let's put this in perspective – this is deep compared to Europe</u>

CHALLENGES - SITE CONDITION

- Offshore Environmental Conditions
 - Wave Conditions height and period
 - Tides and Storm Surges
 - Wind Speed
 - Current

METOCEAN CONDITIONS

Design Environmental Conditions (50-yr storm)

Significant Wave Height (Hs): 10m

Maximum Wave Height (Hmax): 19.5m at 14 sec

Highest Astronomical Tide (HAT): 0.79m

Associated Storm Surge: 1.59m

• 1-minute mean wind at 10m (Vw): 38 m/s [74 knots]

• Surface Current (Vc): 1.2 m/s [2.3 knots]

GEO-TECHNICAL CONDITIONS

SOIL CONDITIONS

- No site specific data available. Following assumed based on public reports.
- High Sand Content (80-100%) in the Northern 2/3rd of the region
- Predominantly silt and clay in the southeastern section
- Southern extent of glaciation -> Risk of large boulders.

CHALLENGES - WEATHER AND WATER DEPTH

Increasing Water Depth

• Europe: 15-30m

North East US: 15-65m

• 18m (59ft) winter waves

ASSUMED WIND FARM

REQUIREMENTS

- Install 100 x 8MW wind turbines:
 - Foundations piles and jackets (optional)
 - Towers
 - Nacelle
 - Blades
- Safe and Secure Year-round operation.
- Maximum water depth 55m (summer) and 50m (winter)
- Deck area and load capacity to carry four turbines
- Crane capacity and reach to lift, position, and hold in precise alignment 8MW turbine

REQUIREMENTS - 8MW TURBINE

PARAMETER	8 MW
ROTOR DIAM (m)	175
BLADE LENGTH (m)	85
BLADE WEIGHT (te)	40
BLADE CHORD(m)	6
NACELLE WEIGHT(te)	450
LIFTING FRAME (te)	45
TOTAL NACELLE(te)	495
NACELLE LENGTH(m)	21
NACELLE WIDTH(m)	9.6
TOWER LENGTH (m)	94
TOWER WEIGHT(te)	500
TOWER DIAM (m)	6.75
TOTAL LENGTH (m)	94
# SECTIONS	2
SECTION LENGTH(m)	47
SECTION WEIGHT(te)	250

installed power

REQUIREMENTS - 8MW TURB

- Towers may be up to 500MT
- Lengths of up to 94m
- Diameters of up to 6.75m
- Large Deck Capacities

REQUIREMENTS - 8MW TURBINE

- Nacelles at great height and reach:
 - Nacelles may be 21mL x 9.6mW x 9.6mH
 - They weigh up to 450MT with 50MT lifting frame
 - They need to be lifted to at least 117m above the sea and held in place while they are bolted

LIFTING REQUIREMENTS

- 450 te nacelle +
- 50 te frame/rigging
- 500 te SWL
- Height = 123m above still water line

CHALLENGES- CRANE CAPACITY

- Not just lifting weight
- Reach and Hook Height requirements drives selection of crane
- Need to refer to the Crane Load Chart

© GustoMSC by 2016. All rights reserved, confidential

REQUIREMENTS - 8MW TURBINE

- Turbine Blades at great height and reach:
 - Blades are 85m long with a 6m chord
 - They weigh up to 40MT
 - They need to be lifted to at least 117m above the sea and held in place while they are bolted

CHALLENGES- PRECISION

 Held precisely for extended periods of time for assembly and securing

DESIGN CONSIDERATIONS - FOUNDATIONS

WINDFARM - FOUNDATIONS

 8 MW turbines in 55m of water exceed the current range for monopiles.

Risk of monopile refusal if boulder hit.

Jackets may be more complex to manufacture but are proven technology.

 Pin-Pile Jackets were adopted as the most weight efficient and also with these installation of the piles can be done separately providing more schedule flexibility

REQUIREMENTS - 8MW TURBINE

- FOUNDATION supporting an 8MW turbine in 55m of water:
 - Water Depth 55m
 - Airgap 15m
 - Jacket Height 70m
 - Jacket Base 30m x 30m
 - Jacket Weight 1000te (approx)
 - Transportation
 - Barge 3 or 4 per trip.
 - Deck of Self Propelled WTIV or Feeder Barge 1 per trip
 - Piles $2.7m\emptyset \times 40m$, 150MT each (approx.)
 - Pile Installation and Driving by hammer

TRANSPORTATION AND INSTALLATION

TRANSPORTATION STRATEGIES

Transit Strategy

 Main wind turbine installation vessel (WTIV) sails into port, loads and then carries parts and material out to the wind farm site where it will perform the installation. It will then return to port for the next load.

Feeder Strategy

 WTIV remains in the field and is supplied by one or more feeder barges which ferry parts and material out from the port to the wind farm site. The WTIV lifts the material off the Feeder Barge which then returns to port for more material. The feeder barges are smaller units with no main crane.

REQUIREMENTS- TRANSPORTATION

- Large Deck Capacities:
 - Transit option (4 Turbines)
 - 3450m^2 of deck space
 - 6400te of deck load
 - Feeder option (2 Turbines)
 - 1800m^2 of deck space
 - 3400te of deck load

DESIGN CONSIDERATIONS - TRANSPORTATION

CHALLENGES - MARINE OPERATION

- Need to transit and accurately position installation
 vessel at least 100 to 300 times in quick succession so
 a dynamic positioning system should be installed.
 - Lack of ready inventory of DP capable tugs/supply boats/crane barges in the area
 - Handling multiple units in close proximity for an extended period of time increases the SIMOPS risk
- Ports limit maximum beam to 150ft. Draft must be less than 28.5 feet.
- Vessels will not be able to enter ports with bridges

PIN-PILE INSTALLATION – Winter

• JACKET INSTALLATION - Early/Late in Season

TURBINE INSTALLATION - Summer

OUR SOLUTION

DESIGN REQUIREMENTS

- Design Philosophy
 - Wind is not like offshore oil. It is a repetitive industrial process not a oneoff operation.
 - Reduce the risk of schedule delay through improved operability and simplicity of operation
 - Reduce personnel exposure in small boats, over the side or at height
 - Maintain positive control of all loads at all times
 - Provide flexibility to perform more than one function
 - Increase operational weather windows
 - Stay on-location and operate year-round
 - Ease loading options in port

DESIGN REQUIREMENTS

- Satisfy all Class and USCG requirements
- Design to the 50yr winter storm per SNAME 5-5A
- Provide a 1500te crane with a minimum 30m lift radius
- Self-propelled (≥ 9 knots) and self-installing with a DP-2 system
- Minimize preload time using cross-loading on 4-legs.
- Continuous jacking system (24m/hr) to speed up going on location

Main particulars

Principal dimensions

Hull length127.8 mHull width42.0 mHull depth10.0 m

Leg length max. (incl. spud-can) 92.0 m Leg Length max. under Hull \pm 69.0 m Water depth (survival) 50-55 m

 $\begin{array}{lll} \text{Pre-load} & 9,800 \text{ t} \\ \text{Variable load} & 6,400 \text{ t} \\ \text{Deck area} & 3,450 \text{ m}^2 \\ \text{Deck load} & 10 \text{ t/m}^2 \end{array}$

DP-2

Accommodation 90 PoB Jacking moves 150 / yr

Main craneLeg typeMain hoist1,500 t

Spiego Carried States a p

NG-3750C FEEDER

Main particulars

Principal dimensions

Hull length70.5 mHull width38.0 mHull depth6.5 mSpeed7 kn

Leg length max. (incl. spud-can) \pm 68.0 m Leg Length max. under Hull \pm 68.0 m Water depth (survival) \pm 50 m

Variable load 3,400 t
Deck area \pm 1,800 m²
Deck load 10 t/m^2

DP-2

Accommodation 12 PoB

Jacking system Positive Engagement Continuous hydraulic, "Pin in Hole"

Pre-load 3,750 t Jacking moves 150 / yr

(ref. 120..)

FINANCES

CAPEX AND SCHEDULE

AVERAGE PRICE FOR 9800C-US (WTIV): \$222 million

10 years of work at \$220,000 /day is required to generate an internal rate of return of at least 10%

CAPEX AND SCHEDULE

AVERAGE PRICE FOR 3750C (Feeder): \$87 million

20 years of work at \$85,000 /day is required to generate an internal rate of return of at least 10%

REGIONAL ROAD-MAP

CONCLUSIONS

- The WTIV requires 10-years of work.
- This will require not one project, but an identified pipeline of projects that a group of states, developers and federal agencies cooperate on.
- However, if the full potential of the offshore wind area on the East Coast is realized (and not just the sample considered here!) then not one, but several vessels may be justified

Thank you for attending our webinar

Val Stori
Clean Energy Group/
Northeast Wind Resource Center

val@cleanegroup.org

Northeast Wind Resource Center: www.northeastwindcenter.org

DOE Wind Exchange: http://energy.gov/eere/wind/windexchange

