Energy Storage State Programs and the RPS

Todd Olinsky-Paul Clean Energy States Alliance November 6-7, 2013

The current total electricity storage capacity of the US and of the globe is less than 1% (mostly pumped hydro)

Global Electricity Storage Capacity

Total Capacity (left) and Non Pumped Hydro only (right) in MW in 2012

Energy Storage Market Potential

- Lux Research \$114 B by 2017
- Piper Jaffrey \$600 B market over 10-12 years
- Boston Consulting Group \$400 B market by 2020
- EPRI/DOE annual savings of \$50 billion/year via energy storage

Energy storage is a key enabling technology for variable resources like wind and solar

Energy Storage Services

	POWER (<u><15min)</u>	ENERGY <u>(>1hr)</u>	
LOAD	PQ, Digital Reliability UPS	Spinning reserve/Load Following, UPS	Peak Shaving, Load Shifting
GRID	Voltage Support, Transients, Regulation	Dispatchability for Renewable Energy Resources	T&D Congestion Mitigation, Time of Use Arbitrage, Upgrade
	seconds	minutes	hours

Grid Services Valued Differently in Different Locations

Market	Location	Years	Annual	Assumptions
Evaluated		Evaluated	Value	
			(\$/kW)	
Energy Arbitrage	PJM ^a	2002- 2007	\$60-\$115	12 hour, 80% efficient device. Range of efficiencies and sizes evaluated ¹⁵
	NYISO [▷]	2001-	\$87-\$240	10 hour, 83% efficient device. Range of
		2005	(NYC)	efficiencies and sizes evaluated.
			\$29-\$84	
			(rest)	
	USA ^c	1997-	\$37-\$45	80% efficient device, Covers NE, No Cal,
		2001		PJM
	CA ^d	2003	\$49	10 hour, 90% efficient device.
Regulation	NYISO⁵	2001-	\$163-248	
		2005		
	USA ^e	2003-	\$236-\$429	PJM, NYISO, ERCOT, ISONE
		2006		
Contingency	USA ^e	2004-	\$66-\$149	PJM, NYISO, ERCOT, ISONE
Reserves		2005		

Choose the Right Technology for the Service!

Each Service Area Is Operated Differently...

PJM

NY ISO

Different signals in each ISO have significantly different impact on dispatch, cycles, life of a storage resource.

CleanEnergy States Alliance

CAISO

...And They Operate Under Different Rules!

Two Main Drivers:

Two Main Drivers:

1) Integration of Renewables

Two Main Drivers:

Integration of Renewables Resilient Power Solution

Two Main Drivers:

Integration of Renewables (Utility Scale) Resilient Power Solution (Facility/Campus/ Microgrid Scale)

 Integration of Renewables: Increasing penetration of variable renewables on grid, spurred by RPSs, requires an integration solution

Wind Generation Does Not Match Well With Electricity Demand Cycles, Hourly Or Seasonally

Electricity demand peaks during daytime hours

Wind generation peaks at night, falls during daytime hours

Solar does better, but still not a perfect match

Demand peaks during summer; wind generation falls during summer, peaks during winter

Example: ERCOT has ~13% Wind Penetration (installed capacity).

Two Problems:

- Under-Generation: On February 26, 2008, a Stage 2 emergency was declared when wind production fell from more than 1,700 MW to 300 MW; ERCOT system operators curtailed power to interruptible customers to shave 1,100 MW of demand within 10 minutes.
- 2. Over-Generation: From December 2008 to December 2009, ERCOT curtailed 500 MW 2,000 MW wind power daily on average, at times up to 3,900 MW. In 2009, average annual wind curtailment was around 16%.

2) Resilient Power Solution: Increasing Severe Storms Cause Increasing Damage

U.S. 2012 Billion-dollar Weather and Climate Disasters

NOTE: Does not include earthquakes

Energy Storage Can Help With Both Problems!

... But What About Cost?

EPRI "Cost Effectiveness of Energy Storage in California" Cost-Benefit Analysis for California PUC

Prioritized Use Cases (Highlighted)

Categories	Use Cases	
Transmission-Connected	Bulk Storage System (aka Peaker Substitution) Ancillary Services	
Energy Storage	On-Site Generation Storage	
	On-Site Variable Energy Resource Storage	
Distribution-Level	Distributed Peaker	
	Distributed Storage Sited at Utility Substation	
Energy Storage	Community Energy Storage	
	Customer Bill Management	
Demand-Side (Customer-Sited) Energy Storage	Customer Bill Management w/ Market Participation	
	Behind the Meter Utility Controlled	
	Permanent Load Shifting	
eaninergy	EV Charging	

EPRI: "Cost Effectiveness of Energy Storage in California" Results

Facility-, Campus- or Microgrid-Scale Energy Storage May Find Higher Value Uses

... Especially for Critical Infrastructure Resilient CleanEnergy Power/Disaster Preparedness

The Role of Clean Energy States Alliance (CESA) and Clean Energy Group (CEG)

Two projects address energy storage directly:

- 1) Energy Storage Technology Advancement Partnership (ESTAP)
- 2) Resilient Power Project

ESTAP* Overview

Purpose: Create new DOE-state energy storage partnerships and advance energy storage, with technical assistance from Sandia National Laboratories

Focus: Distributed electrical energy storage technologies

Outcome: Near-term and ongoing project deployments across the U.S. with co-funding from states, project partners, and DOE

* (Energy Storage Technology Advancement Partnership)

ESTAP Key Activities

- 1) Disseminate information to stakeholders
- 2) Facilitate federal/state partnerships to support energy storage project development

ESTAP Partnership Locations

Solar/EV/Battery

ESTAP Federal/State partnerships

Partnership on Projects

- Alaska
- Maryland
- Massachusetts
- Pennsylvania
- Vermont

Partnership on Programs

- Connecticut Microgrid Grant and Loan Pilot Program
- New Jersey Energy Storage Working Group
- New Mexico emerging program
- Oregon emerging program

Vermont

Connecticut Microgrid Grant and Loan Pilot Program

- Three year resiliency program
- \$15 million/year, \$45 million total state allocation
- Round 1 concluded with 9 project grants awarded
- Round 2 RFP under development
- DOE/Sandia/CESA role:
 - Assist in RFP development
 - Help to evaluate project proposals
 - DOE \$ contribution to support qualifying projects
 - Monitor and evaluate project performance once complete

Connecticut DEEP Microgrid Grant and Loan Pilot Program First Round Results

	Project	Facilities	Generation	Grant Value
	UConn Depot			
	Campus/Storrs	Campus Buildings	400 kW fuel cell, 6.6 kW PV	\$2,144,234
	City of Bridgeport-City	City hall, Police Station, Senior		
	Hall/Bridgeport	Center	(3) 600 kW natural gas microturbines	\$2,975,000
			(1) 2.4 MW and (1) 676 kW Natural Gas	
		Campus, Athletic Center (Public	Combined Heat and Power Reciprocating	
	Wesleyan/Middletown	Shelter)	Engine	\$693,819
	University of Hartford-	Dorms, Campus Center, Operation	(2) 1.9 MW diesel (existing), 250 kW	
	St. Francis/Hartford	Building	diesel, 150 kW diesel	\$2,270,333
	SUBASE/Groton	Various Buildings and Piers	5 MW cogen turbine, 1.5 MW diesel	\$3,000,000
	Town of		(2) 130 kW natural gas, 250 kW solar, 200	
	Windham/Windham	2 Schools (Various Public Purposes)	kWh battery; (2) kW diesel,	\$639,950
	Town of	Police Stations, Fire Station,		
	Woodbridge/Woodbrid	Department of Public Works, Town		
	ge	Hall, High School, Library	1.6 MW natural gas, 400 kW fuel cell	\$3,000,000
	City of Hartford-			
	Parkville	School, Senior Center, Library,		
	Cluster/Hartford	Supermarket, Gas station	600 kW natural gas	\$2,063,000
		Police Station, Emergency	50 kw natural gas recip engine, 250 kW	
	Town of Fairfield-	Operations Center, Cell Tower, Fire	natural gas recip engine, 27 kW PV, 20	
	Public Safety/Fairfield	Headquarters, Shelter	kW PV	\$1,167,659

New Jersey Energy Storage Working Group

- Effort led by NJ Board of Public Utilities
- Four year energy storage initiative
- \$10 million total state investment (\$2.5M/year)
- Focus on resilient power applications
- ES to be paired with renewable generation
- Round 1 RFP forthcoming March 2014
- DOE/Sandia/CESA role:
 - Assist in RFP development
 - Help to evaluate project proposals
 - DOE \$ contribution to support qualifying projects
 - Monitor and evaluate project performance once complete

New Jersey Four-Year Energy Storage Incentive Program

NJ BPU priorities include:

- Emphasis on spending for projects that can be completed within 1 year.
- Desire to build a sustainable market that does not rely on NJCEP funding.
- Presence of storage can firm PV production to allow facilities to participate in other available incentive programs such as demand response, etc.
- Explore the role of energy storage as means of ensuring the operation of critical facilities during power outages.

VERMONT CLEAN ENERGY DEVELOPMENT FUND Electrical Energy Storage Demonstration Program

- State has issued solicitation, received and reviewed proposals: award announcement and contract pending
- Energy storage system to be rated > 200 kW, 400 kWh
- Primary objective: to support the integration of renewables into the grid
- DOE/Sandia role:
 - Assist in RFP development
 - Help to evaluate project proposals
 - DOE/Sandia contribution to project cost
 - Monitor and evaluate project performance once complete

Resilient Power Project

With foundation support, Clean Energy Group is working with a core group, consisting primarily of Northeastern states that were hit hard by Superstorm Sandy, and are seeking resilient power solutions:

- Connecticut
- Massachusetts
- New Jersey
- New York
- Rhode Island

- California
- Maryland
- Ohio
- Oregon

There is interest from other states as well, and we intend to grow this into a national effort

A Modest Proposal:

In FERC-compliant service territories, such as PJM and NYISO, states could incentivize third-party energy storage developers to co-locate with PV at designated critical infrastructure, install islanding equipment, and provide a local resiliency benefit when the grid goes down.

PV vendor provides PV, sells power

Result: Islandable critical facility powered by solar PV and energy storage, provides community benefits Storage vendor provides battery and inverter, sells services to grid, agrees to provide resiliency to host site in event of grid failure

Thank You

Todd Olinsky-Paul Clean Energy States Alliance Energy Storage Technology Advancement Partnership <u>Todd@cleanegroup.org</u>

