RESILENTPOWER A project of **CleanEnergy**Group

+ ෩ = 🌮 🤭 🏝 🖪 🕒 🏈

The Economics of Resilient Solar+Storage for Critical Infrastructure

September 14, 2016

Housekeeping

All participants are in "Listen-Only" mode. Select "Use Mic & Speakers" to avoid toll charges and use your computer's VOIP capabilities. Or select "Use Telephone" and enter your PIN onto your phone key pad.

Submit your questions at any time by typing in the Question Box and hitting Send.

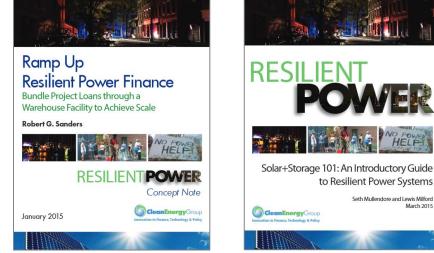
This webinar is being recorded.

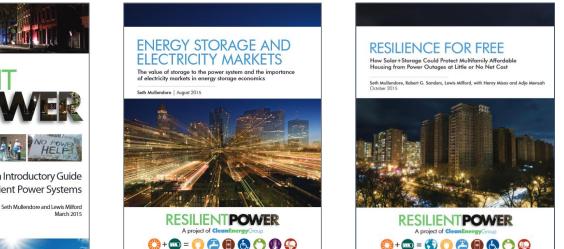
You will find a recording of this webinar, as well as previous Resilient Power Project webinars, online at:

www.resilient-power.org

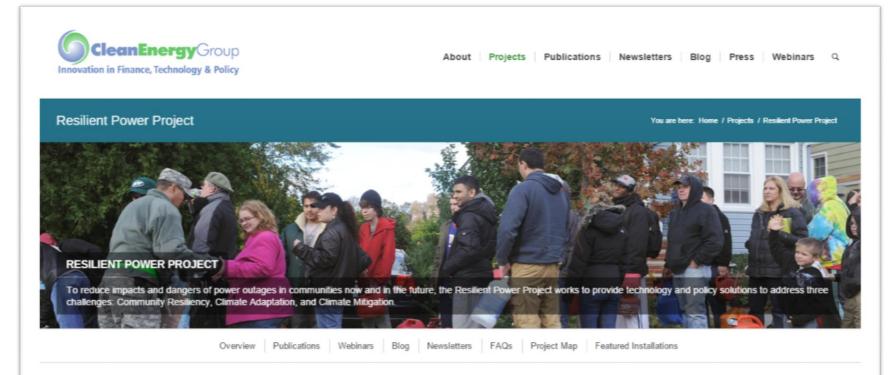
Who We Are

www.resilient-power.org




SURDNA FOUNDATION

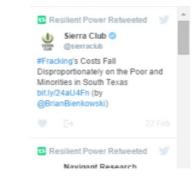
Fostering sustainable communities in the United States


Resilient Power Project

- Increase public/private investment in clean, resilient power systems
- Engage city officials to develop resilient power policies/programs
- Protect low-income and vulnerable communities
- Focus on affordable housing and critical public facilities
- Advocate for state and federal supportive policies and programs
- Technical assistance for pre-development costs to help agencies/project developers get deals done
- See <u>www.resilient-power.org</u> for reports, newsletters, webinar recordings

www.resilient-power.org

Sign Up for the Resilient Power Project Mailing List



Seth Mullendore Project Manager seth@cleanegroup.org With the Resilient Power Project, Clean Energy Group and Meridian Institute are working to accelerate market development of clean energy technologies for resilient power applications that serve low-income communities and vulnerable populations during disasters and power disruptions, and to address climate adaptation and mitigation goals through expansion of reliable renewable energy deployment. To reduce impacts and dangers of power outages in communities now and in the future, the Resilient Power Project works to provide technology and policy solutions to address three challenges facing the country: Community Resiliency, Climate Adaptation, and Climate Mitigation.

Clean Energy Group's role in this process is to help inform, coordinate, and support federal, state, and local officials, policy makers and developers with the goal of deploying resilient power projects in communities across the country. In addition to providing program guidance to policy makers and limited technical assistance funding for across the country and the providing program guidance to policy makers and limited technical assistance funding the providing program guidance to policy makers and limited technical assistance funding the policy makers are policy makers and limited technical assistance funding the policy makers and limited technical assistance funding the policy makers are policy makers and limited technical assistance funding the policy makers are policy makers and limited technical assistance funding the policy makers are po

Follow the Resilient Power Project on Twitter

Tweets by @Resilient_Power

Today's Speakers

- Erica Helson, New York State Solar Ombudsman, Sustainable CUNY
- Lars Lisell, New York State Solar Ombudsman, Sustainable CUNY
- Kate Anderson, Group Manager, National Renewable Energy Laboratory

Economic and Resiliency Impact of PV and Storage on New York Critical Infrastructure

September 14th, 2016

AGENDA

- I. Introduction Erica Helson, Sustainable CUNY
- II. Valuing Resiliency Lars Lisell, Sustainable CUNY
- III. Methodology and Results Kate Anderson, National Renewable Energy Laboratory
- IV. Findings Erica Helson, Sustainable CUNY
- V. Questions

Objective

A more resilient distributed energy system in NYC, with a path for expansion across the state and country

Engage Stakeholders Create Strategic Pathways Increase Resilient PV Deployment

New York Solar Smart DG Hub-Resilient Solar Project: Economic and Resiliency Impact of PV and Storage on New York Critical Infrastructure

Kate Anderson, Kari Burman, and Travis Simpkins National Renewable Energy Laboratory (NREL)

Erica Helson and Lars Lisell City University of New York (CUNY)

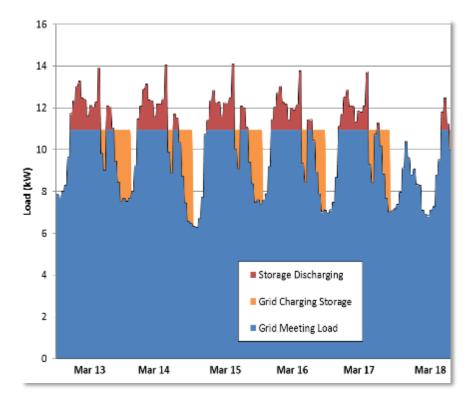
Download at: www.nysolarmap.com/resources/reports/

Resilient PV Study on NYC Critical Infrastructure

- Technical and economic viability of emergency power systems
- Included a value of resiliency equal to cost of grid interruptions

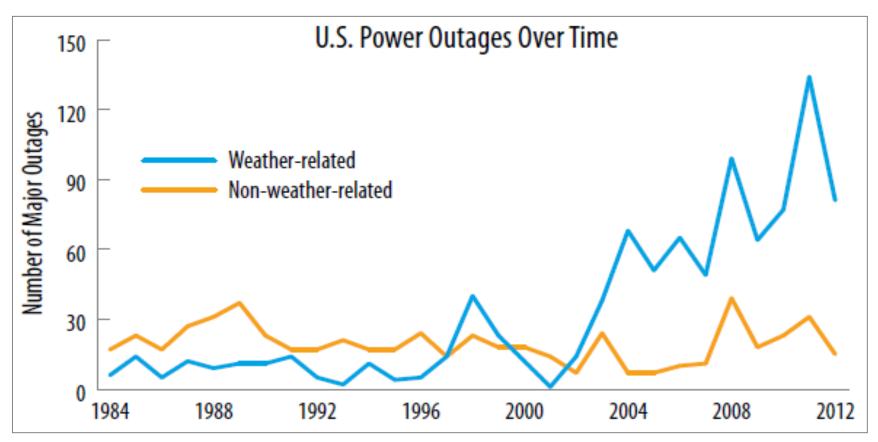
School

Fire Station



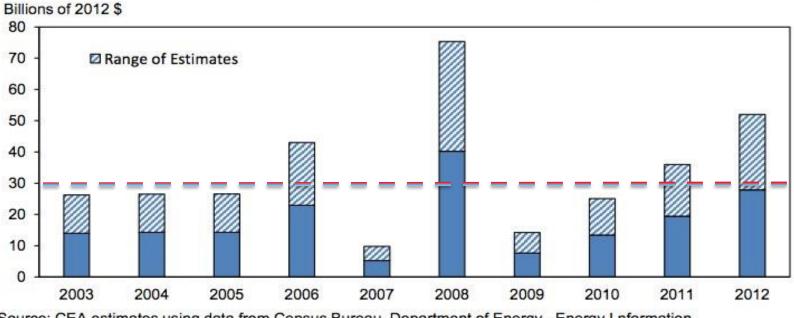
Cooling Center

- Many solar+storage analyses do not factor in a value for resiliency
- DG Hub projects will value resiliency to expand the conversation



CU COCO

Value of Resiliency



Source: Blackout: Extreme Weather, Climate Change and Power Outages. (Kenward & Raja 2014)

Estimated Costs of Weather-Related Power Outages

Source: CEA estimates using data from Census Bureau, Department of Energy, Energy I nformation Administration, Sullivan et al 2009.

From: Economic Benefits of Increasing Electric Grid Resilience to Weather Outages, Executive Office of the President.

Methods of valuing resiliency

- 1) Cost of an outage
 - a. Individual Site Characterization (EPRI Outage Cost Estimation Guidebook Method)
 - b. National Outage Survey (Interruption Cost Estimate Calculator Method)
 - c. NY PRIZE Workbook (Societal Costs)
 - d. Insurance valuation
- 2) Cost of other forms of emergency power
 - a. Generator
 - b. Combined Heat and Power
 - c. Uninterruptable Power Supply

Methods of valuing resiliency

- 1) Cost of an outage
 - a. Individual Site Characterization (EPRI Outage Cost Estimation Guidebook Method)
 - b. National Outage Survey (Interruption Cost Estimate Calculator Method)
 - c. NY PRIZE Workbook (Societal Costs)
 - d. Insurance valuation
- 2) Cost of other forms of emergency power
 - a. Generator
 - b. Combined Heat and Power
 - c. Uninterruptable Power Supply

Methods of monetizing system resiliency

- 1) Monthly resiliency payment from site host
- 2) Reduction in insurance premiums
- 3) System incentive
- 4) Internal risk mitigation (contingency planning)

Value vs. Cash Flow

Methods of monetizing system resiliency

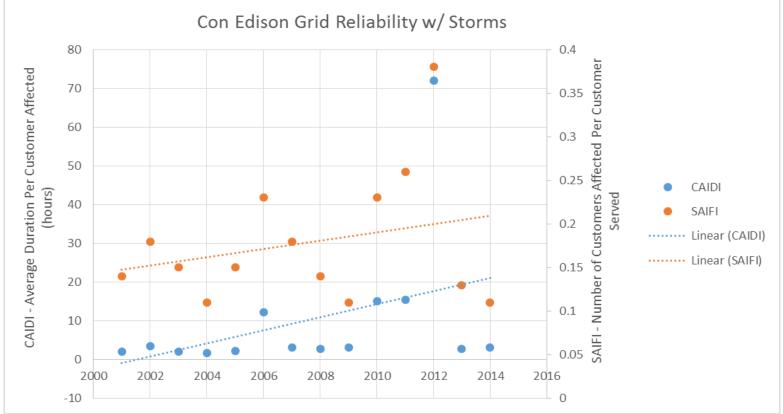
- 1) Monthly resiliency payment from site host
- 2) Reduction in insurance premiums
- 3) System incentive
- 4) Internal risk mitigation (contingency planning)

VPP REV Demonstration Project

Value vs. Cash Flow

Estimating the Value of Resiliency

Method

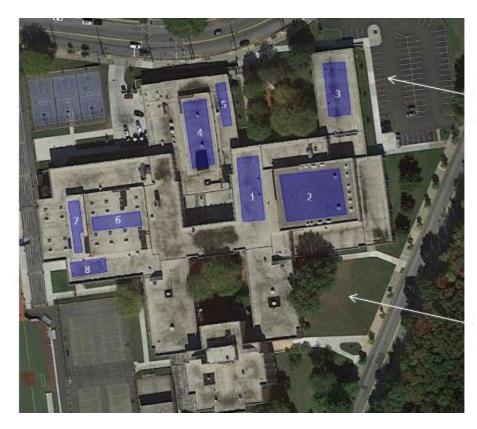

*Macroscopic: Based on national estimates of past outage costs

- Used DOE ICE Calculator; key inputs:
 - Customer type, location, average energy use, industry type, backup capabilities
 - SAIFI: Average number of interruptions a customer experiences per year
 - CAIDI: Average outage duration per utility customer affected

	ICECa	Iculate					ERGY	
Home	About the Calculator Di	sdaimer Rei	evant Reports	Contact U	1			
	Interruption Cost Estimates							
	Sector	No. of Customers	Cost per Event (2010\$)	Cost per Average kW (20165)	Cost per Unserved kWh (2010\$)	Total Cost of Sustained Interruptions (20166)		
	Medium and Large C	81 1	\$1,931.8	\$86.0	\$86.0	\$77.3		
	Small C	0 18	\$725.8	\$210.5	\$210.5	\$0.0		
	Resident	Sal 0	\$4.1	\$4.9	\$4.9	\$0.0		
	All Custome	ers 1	\$1,931.8	\$86.0	\$96.0	\$77.3		
	Input Values							
	54	IDI (in minutes)	1.1	No. of Res	sidential Custome	era: 0		
	6	IDI (in minutes)	60.0					
		States	e New York					
	This tool was funded by the Lawrence Behaley National Laboratory and Department of Energy. Developed by Nexant Lawr new and he laborations had separat to development of he lactricipies, policies and policies transmitting he electric pase indusity on SmelDald pol. Capaging 2 200							

5 Year Average Reliability Inputs					
	Duration Frequency				
	(CAIDI)	(SAIFI)			
Radial	21.88	0.77			
Network	50.96	0.04			

Worst Storm Year in the Past 14 Years					
Duration Frequen					
	(CAIDI)	(SAIFI)			
Radial (2012)	73.5	1.39			
Network (2012, 2007)	58.49	0.075			



	Value of		Cost of
	Resiliency	CAIDI	Outage
Site	(\$/hour/year)	(hours/year)	(\$/year)
School Shelter			
(network)	\$68.97	50.96	\$ 3,515
Fire Station			
(radial)	\$917.43	21.88	\$ 20,071
Cooling Center			
(network)	\$32.02	50.96	\$ 1,631
		,	
	↓ Model Input	Cost of	f Outages Average

Project Process

- 1. Completed site selection
- 2. Conducted site visits
- **3.** Defined assumptions
- 4. Determined critical loads
- 5. Defined scenarios to model
- 6. Determined resiliency value
- 7. Completed modeling
- 8. Analyzed results and formed conclusions
- 9. Dissemination

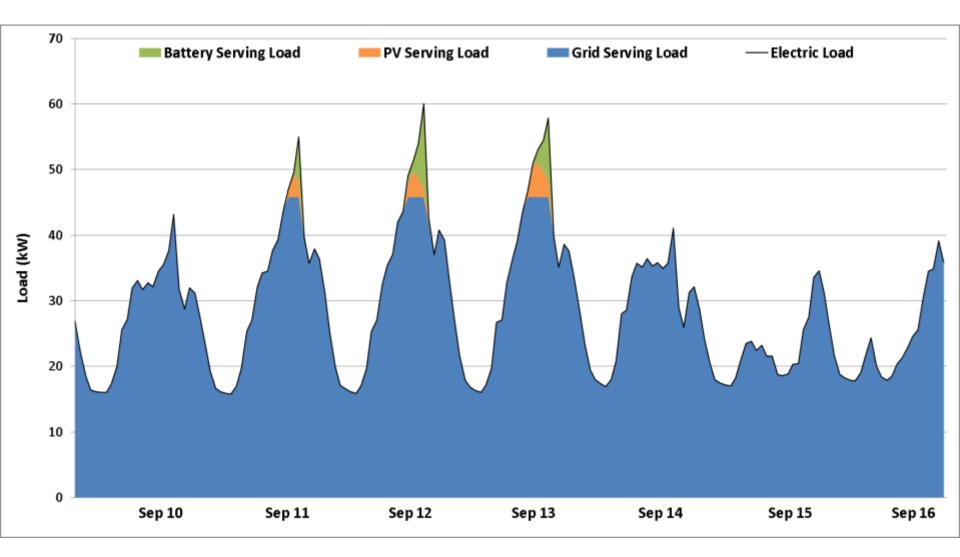
PV Carport

New Building NREL REopt model used to size and dispatch PV, battery, and generator in 4 scenarios:

- Scenario 1: PV + storage sized for <u>economic savings</u>; no resiliency requirement imposed
- Scenario 2: PV + storage sized to meet critical load
- Scenario 3: PV, storage, and generator (<u>hybrid system</u>) sized to meet critical load
- Scenario 4: <u>Generator</u> sized to meet critical load

	Technologies	Goal
1	SolarStorage	Economic Savings
2	SolarStorage	Resiliency
3	SolarStorageGenerator	Resiliency
4	Generator	Resiliency

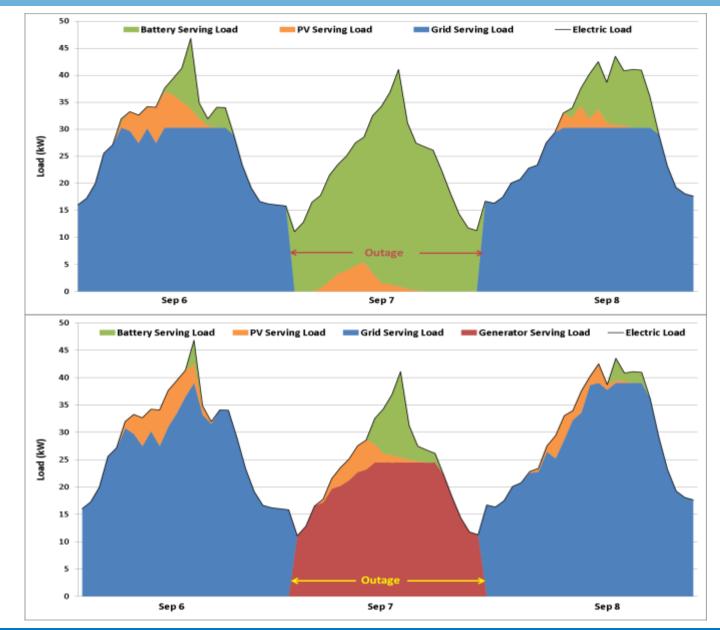
Example Site: Fire Station


	Fi	ire Station			
Utility Rate	S.C. 91 Conventional • Demand: \$32.63/kW with 12-18				HEELER CONTRACTOR
Maximum PV Size	10 kW				ENGINE 309 HOOK & LADDER 159
Load Size	Minimum Load	Maximum Load	Average Load	Critical Load	
	2.86 kW	63.2 kW	15.2 kW	65%	

Scenario 1. Resilient PV Designed for Economic Savings

Fire Station					
Scenario 1: PV + Storage Sized for Economic Savings					
Without resiliency With resiliency value value					
PV Size (kW-DC)	10	10			
Battery Size (kWh)	43	213			
Battery Size (kW)	16	31			
Total Capital Cost	\$69,413	\$172,741			
NPV	\$22,365	\$324,250			
Simple Payback (years)	15.9	6.1			
Percent of critical load system					
can support for 22 hour outage*	2-73%	47-264%			

*The level of resiliency provided by resilient PV systems sized for utility cost savings depends on when the outage occurs, state of charge of the battery, and load size


PV and Battery Reduce Peak Demand

Fire Station							
Scenario 2-4: Sized to Meet Resiliency Needs							
PV+Storage+ PV+Storage Generator Generator							
PV Size (kW-DC)	10	10	0				
Battery Size (kWh)	613	66	0				
Battery Size (kW)	40	20	0				
Generator Size (kW)	0	24	41				
Diesel Fuel Used (gallons/yr)	0	41	47				
Total Capital Cost	\$389,706	\$121,164	\$61,620				
NPV (no resiliency value)	-\$256,158	-\$1,679	-\$52,896				
NPV (with resiliency value)	\$93,118	\$344,848	\$296,380				

2-4. PV, Storage, and Generator Meeting Critical Load

PV+Storage

PV+Storage+ Generator

- PV+storage systems provide cost savings with some resiliency
 - $_{\odot}~$ Cost-effective due to high demand rates and shape of load
 - Sustaining full critical load with PV+storage is cost-prohibitive, however can sustain part of load for part of outage

School Shelter: Percent of Critical Load System Can Support						
System Size: 50 kW solar 35 kW / 74 kWh battery						
Critical Load: 400 kWh/day, 35 k	W, 10% of typical lo	bad				
46% - 285% •						
51 hour outage	12% - 50%	• 12%	5 0%			

- For emergency power, hybrid systems are most cost-effective
 - PV+storage provides utility cost savings while grid-connected
 - Generator provides extra power and energy to sustain outages
 - PV+storage extend diesel fuel supplies by 9-36%
 - However, hybrid systems have higher initial cost and are more complex

- Including the cost of grid interruptions improves project economics
 - Value increases for customers with more frequent outages or longer outages

School					
PV+Storage Sized for Economic Savings					
Without Resiliency With Resiliency					
PV Size (kW-DC)		50	50		
Battery Size (kWh)		74	74		
Battery Size (kW)		35	35		
Net Present Value		\$51,560	\$58,650		

Fire Station					
	Witł	nout Resiliency	With Resiliency		
PV Size (kW-DC)		10	10		
Battery Size (kWh)	43		213		
Battery Size (kW)		16	31		
Net Present Value		\$22,365	\$324,250		

+7,090

- Adding storage can improve PV project economics by reducing demand charges
 - Adding storage to city solar deployments could also be an opportunity to align the city's sustainability and resiliency goals

- Regulatory changes may be necessary in order to permit resilient PV as a code-compliant option for emergency power, similar to how Local Law 111 removed barriers to the use of natural gas generators for emergency power
- Obtaining more granular cost assumption data on resilient PV projects would help fill in any gaps on integration, critical load isolation, and other additional costs
- The question of how resiliency is valued for critical infrastructure needs to be answered in order to understand the economics of emergency power investments

Lars Lisell Lars.Lisell@cuny.edu 646-664-9458

Kate Anderson <u>kate.anderson@nrel.gov</u> 303-384-7453

Erica Helson Erica.Helson@cuny.edu 646.664.9459

www.nrel.gov

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Thank you for attending our webinar

Seth Mullendore Project Director Clean Energy Group <u>seth@cleanegroup.org</u>

Find us online: <u>www.resilient-power.org</u> <u>www.cleanegroup.org</u> <u>www.facebook.com/clean.energy.group</u> @cleanenergygrp on Twitter @Resilient_Power on Twitter

