
Improving Energy Resiliency with Flow Batteries

September 15, 2016

Housekeeping

All participants are in "Listen-Only" mode. Select "Use Mic & Speakers" to avoid toll charges and use your computer's VOIP capabilities. Or select "Use Telephone" and enter your PIN onto your phone key pad.

Submit your questions at any time by typing in the Question Box and hitting Send.

This webinar is being recorded.

You will find a recording of this webinar, as well as previous Resilient Power Project webinars, online at:

www.resilient-power.org

Clean Energy Group (CEG)

www.cleanegroup.org

www.resilient-power.org

SURDNA FOUNDATION

Fostering sustainable communities in the United States

CEG's Resilient Power Project

- Increase public/private investment in clean, resilient power systems
- Engage city officials to develop resilient power policies/programs
- Protect low-income and vulnerable communities
- Focus on affordable housing and critical public facilities
- Advocate for state and federal supportive policies and programs
- Technical assistance for pre-development costs to help agencies/project developers get deals done
- See <u>www.resilient-power.org</u> for reports, newsletters, webinars, and more.

Northeast Electrochemical Energy Storage Cluster (NEESC)

NEESC is a network of industry, academic, government and non-governmental leaders working together to help businesses provide energy storage solutions.

Today's Guest Speaker

Adam Rauwerdink Director of Sales Engineering VIONX Energy

VIDNX[™]

TRANSFORMING THE GRID

Proven Long Duration Energy Storage

Improving Energy Resiliency with Flow Batteries Adam Rauwerdink, Director of Sales Engineering

Proven Long Duration Energy Storage

20 YEAR LIFETIME

Bankable, utility-grade asset designed for the long run.

6 - 10 HOUR RUNTIME

Operational flexibility and endurance for multiple applications.

LASTING CAPACITY

No degradation. No augmentation. No replacement.

Leveraging World-Class Strategic Partners DEEP EXPERIENCE IN TECHNOLOGY, ENERGY, MANUFACTURING AND FINANCE

EQUITY OWNERS

STRATEGIC & TECHNOLOGY PARTNERS

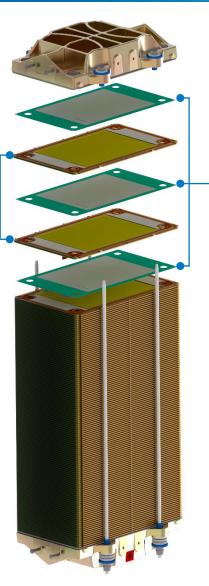
System Optimization, Ongoing R&D

Vanadium Supply

Leveraging World-Class Technology DECADES OF TECHNOLOGY AND MATERIALS VALIDATION BY UTC & 3M

INTERDIGITATED FLOW FIELD

High Power


Twice the power density of traditional stacks through an advanced flow field design

High Reliability

Low pressure operation enables 20-year stack life and maximizes reliability

Low Cost

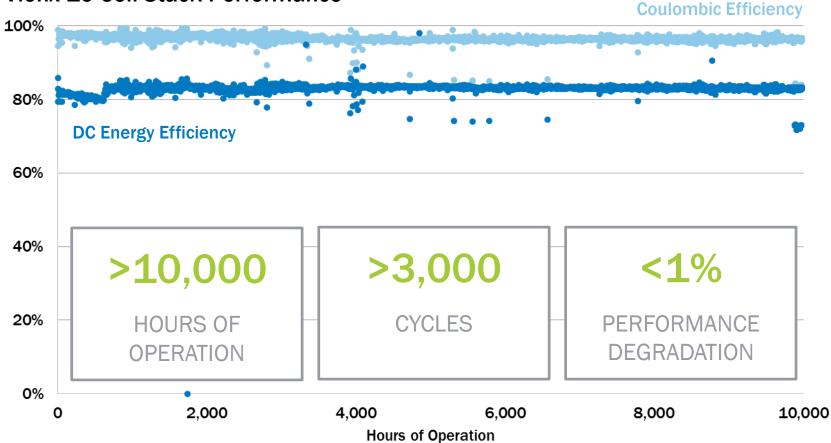
Half the stack cost of other flow batteries and no replacement costs

UNIFIED ELECTRODE ASSEMBLY

Proven Materials & Performance

Decades of performance validation and established volume manufacturing

No Degradation. No Cycle Limits.

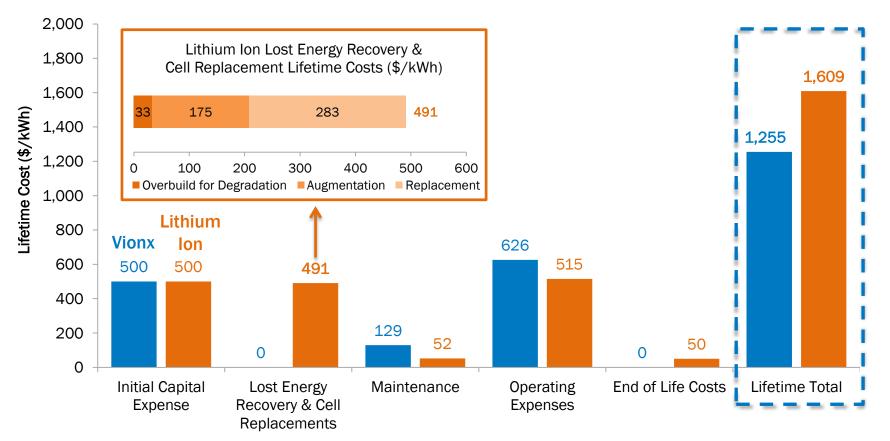

Maintains performance over a 20-year life with no limitations on how often the system is cycled

INDEPENDENTLY EVALUATED						
	DNV.GL					

No Performance Degradation With Cycling or Time

Vionx 10-Cell Stack Performance

The Superior Technology for Long Duration


Strong Me	dium	Weak					
Storage Technolo	gy	Vanadium Redox Flow Battery	Lithium Ion Battery	Other Flow Batteries	Sodium Sulfur Battery	Compressed Air Energy Storage	Pumped Hydro
Economic Runtim	e	6 - 10 hours	0.5 - 4 hours	1 - 5 hours	6 hours	8 hours	6 - 20 hours
20 Year LCOE (\$/MWh)		\$216 - \$260	\$260 - \$270	N/A	\$400 - \$500	\$120 - \$210	\$188 - \$274
Installed AC Syst Cost (\$/kWh)	em	\$500 - \$700	\$500+	\$350 - \$1,500	\$500 - \$2,500	\$200	\$250 - \$350
Lifetime		20 years	10 years	Unproven	5 - 15 years	20+ years	20+ years
Capacity Degradation		None	Yes ~30% in 10 years	Unproven	Yes	Limited	Limited
Siting : Size (MWh/acre) & Restrictions		100 Limited Restrictions	200 Limited Restrictions	50-75 Limited Restrictions	200 Limited Restrictions	N/A Geographic Restrictions	N/A Geographic Restrictions
Track Record		Demonstration/ Deployment	Commercial	R&D / Demonstration	Commercial	Commercial	Commercial
Safety		Stable, non- flammable	Fire Hazard	Stable, non- flammable	High Operating Temperature	High Pressure	Safe
Competitors			T Ξ 5 L Π Panasonic ⓓ LG Chem	Vizn ENERGY	🛞 🕌	LightSail	_
			SAMSUNG	O PRIMUS POWER.	FIAMM	DRESSER-RAND	

Sources: Company; DOE/EPRI 2013 Electricity Storage Handbook; JPM Energy Storage Primer, 12/7/15; Lazard Levelized Cost of Storage Analysis, 11/15/15

Vionx VRB Beats Li-Ion Lifetime Cost

LITHIUM ION CAPACITY LOSS AND REPLACEMENTS DRIVE 20 YEAR LIFETIME COST

Grid-Scale Validation

Military & Microgrids (Ft. Devens, MA) Operational

Q3 2016 Wind Integration (Worcester, MA) Under Construction

Q4 2016 Integration (Everett, MA)

160kW / 640 kWh System

- Micro-Grid Control Compatibility
- Time-of-Use Rate Reduction
- Demand Charge Reduction

500kW / 3,000 kWh System

- Wind Integration (600kW Wind)
- ✓ Time-of-Use Rate Reduction
- ✓ Demand Charge Reduction

500kW / 3,000 kWh System

- PV Integration (605kW Solar)
- ✓ Voltage Support
- ✓ Load Following

VNX1000 SERIES 1,000 KW / 6-10 Hours

Modular Architecture

Independent scaling of power and energy

- Optimal system sizing for each application
- Flexibility to add power or energy as project needs change over time

Simplicity

Maximizes power density & minimizes footprint to reduce material and site costs

- Reduces container spacing & pipe runs
- Reduces wetted electrolyte surfaces, minimal propensity for leaks
- Minimizes moving components via centralization of all pumps, controls, etc. in stack container
- Electrolyte containers have no moving parts

Durable, Quality Components

Maximize system life and minimize operational expense

- Materials meet chemical industry standards
- Containers are marine grade for maximum climate resistance
- Electrolyte 100% double walled/contained

VNX1000 Specifications

Energy Storage Module	VNX1000-6	VNX1000-8	VNX1000-10		
Energy Storage (MWh)	6 MWh	8 MWh	10 MWh		
Usable Depth of Discharge	100%	100%	100%		
Life	20 years (unlimited cycles)				
Power Rating	1 MW AC (2 Stack Containers)				
DC Footprint	185 m ² / 2,000 ft ²	195 m ² / 2,100 ft ²	205 m^2 / 2,200 ft ²		
DC Efficiency (stack)	78%	78%	78%		
DC Voltage	500V-800V DC operating range				
AC Efficiency	68%	68%	68%		
Signal Response	<1 Second electrolyte pumps ON • <1 Minute electrolyte pumps OFF				
Interconnection Standard	IEEE 1547				
Operating Ambient Temperature		-40°C to +45°C / -40°F to 113°F			
Relative Humidity		0 to 100%			
			TM		

©Vionx Energy.

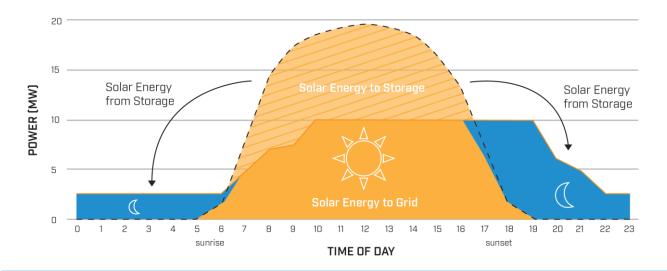
Proven Long Duration Energy Storage Solution

Renewables Integration and Microgrids

- Dispatchable renewable power
- Increased capacity value and optimized energy delivery
- Improved thermal generation efficiency and reliability

T&D Deferral

- Flexible and capital-efficient grid design
- Rapid deployment and simplified siting
- Increased utilization of existing assets


Commercial and Industrial

- Improved utilization of local solar
- Lower demand charges and more reliable power
- Revenue from grid services

Dispatchable 24x7 Solar Power

Solar + Vionx Long-Duration Storage = Dispatchable Power at 15¢/kWh Today and 10¢/kWh by 2020

- Solar + Vionx storage is cost effective today
- Leverage existing or new low-cost PV solar to create a complete clean energy system
- Reliable, independent, dispatchable power generation for remote users
- Enables more efficient T&D operations for renewable energy integration
- Eliminates or optimizes fossil fuel-fired generation
- No air emissions or water consumption

Note: Lazard methodology used for LCOE calculation. 80% debt and 20% equity. 16% pre-tax cost of equity. Solar installed cost of \$1,600/kW in 2017 dropping linearly to \$1,000/kW in 2020. Vionx DC costs declining commensurate with projections. 20 year project life. Solar data from NREL PVWatts.

ADAM RAUWERDINK

Director of Sales Engineering o: 978.357.9044 | c: 603.762.3815 e: arauwerdink@vionxenergy.com

Contact Info

Todd Olinsky-Paul Project Director Clean Energy Group Email: <u>todd@cleanegroup.org</u> Phone: (802) 223-2554

<u>www.resilient-power.org</u> <u>www.cleanegroup.org</u> <u>www.facebook.com/clean.energy.group</u> @cleanenergygrp on Twitter @Resilient_Power on Twitter

www.neesc.org